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Abstract

When analyzing text, it is often helpful to process the text into richer structures

representing its linguistic content. Labeled directed graphs are a natural and flexible

representation, especially for natural language semantics. Their generality over trees,

for instance, allows them to represent relational semantics while handling phenomena

like coreference and coordination.

This thesis focuses on such graphical representations of text. We develop novel

algorithms and models for decoding—automatically extracting graphs from raw text;

and encoding—transforming graphs into tensors so that they can be used as input to

a downstream neural network. We primarily focus on semantic graphs—graphs that

represent sentence meanings. Semantic graphs are not necessarily trees, so they require

methods that can handle arbitrary graphs. We make three main contributions. First, we

introduce neural Turbo (Neurbo) parsing and show that it is an effective approach for

semantic dependency parsing, and in particular multitask semantic dependency parsing.

Next, we show that the task of decoding connected semantic graphs can be formulated

as a Node-and-Edge-weighted Connected Subgraph (NEWCS) problem, a novel

extension of a classic, well-studied problem in network optimization called the prize-

collecting Steiner tree (PCST) problem. This allows us to prove theoretical properties

about decoding under connectedness constraints, and to adapt and extend existing

PCST solving techniques to decoding semantic graphs. Finally, we introduce new

lawful neural encoders whose constrained forms allow for efficient exact inference

by dynamic programming. We introduce two models: Soft Patterns (SoPa), which

encode sequences, and Kleene Graph Encoder Networks (KGEN), which encode

all paths in a graph, grouped by source and destination.
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Chapter 1

Introduction

The field of natural language processing has had a lasting love affair with trees. The community

has embarked on large-scale tree-based annotation efforts, such as the Penn Treebank (PTB;

Marcus et al., 1993) and the universal dependency corpus (UD; Silveira et al., 2014). And we

have a swarm of algorithms and machine learning techniques at our disposal for working with

linguistic structures in the shape of trees, from CKY (Cocke, 1969; Kasami, 1965; Younger, 1967),

Chu-Liu-Edmonds (Chu and Liu, 1965; Edmonds, 1967), and Eisner’s algorithm (Eisner, 1996), to

Recursive Neural Networks (Goller and Kuchler, 1996; Costa et al., 2003; Socher et al., 2013) and

TreeLSTMs (Tai et al., 2015). Trees ably represent syntax, the rules and process by which the words

of a sentence combine with each other to form larger and larger phrases and eventually the sentence.

But when one tries to represent the result of that combination process—the meaning or semantics

of a sentence—one quickly finds that trees are no longer sufficient. Entities may participate in

multiple events, and graphs, specifically labeled directed graphs, become necessary. Graphs are

well-studied objects, but they have not received the same level of attention in NLP as have trees, and

there remain several unanswered questions around to their use in computational linguistics. This

thesis contributes several new techniques and algorithms for working with linguistic graphs. We

roughly divide our inquiry into two broad research questions:
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Figure 1.1: An example sentence annotated with semantic frames and roles from FrameNet (Baker
et al., 1998, top/purple), semantic dependencies from DM (Oepen et al., 2014, middle/red) and
syntax from Universal Dependencies (Silveira et al., 2014, bottom/green). Nodes corresponding to
token spans have solid blue fill, and nodes added by a formalism are hollow. Token nodes are shown
both above and below the sentence for clarity. Gray arcs labeled “+” are added between adjacent
token nodes to encode the linear order of the sentence (as graphs are considered to be unordered).
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• What algorithms and techniques are effective at predicting graphs?

• What algorithms and techniques are effective for conditioning on a graph (when making some

other prediction)?

Following terminology first introduced by Warren Weaver in the context of machine translation, we

call the act of predicting a graph decoding, and the act of predicting some other representation from

a graph encoding.

While trees are graphs, graphs are not trees, so moving from syntax to semantics involves

working with graph structures that follow fewer constraints. In a context-free grammar deriva-

tion (Chomsky, 1959), such as those found in PTB, each constituent (other than the sentence itself)

has a single parent constituent. Once a constituent has been expanded via a production rule in the

grammar, its children never interact again. Thus a syntactic parse has a neat, orderly, hierarchical

shape, where constituents recursively expand until the surface words of the sentence are produced.

Similarly, in a syntactic dependency parse resulting from a dependency grammar (Tesnière, 1959),

each token modifies another single token, flowing all the way up to a root token, resulting in an

arborescence (a directed graph that is a rooted tree). By contrast, a sentence’s semantics is a

tangled web of interactions. Specifically, the entities and concepts mentioned in a sentence may

each participate in multiple events and hold multiple relationships to each other. Coreference,

control structure, and coordination (among others), are linguistic mechanisms that can signify

that a participant is involved in more than one situation. For instance, in the sentence “Now I can

buy a soda and spend money” (Figure 1.1), I am the participant who has the capability referred to

by “can”, and within that capability, I am also the instigating agent of both the hypothetical buying

event and the hypothetical spending event.

Trees are one kind of special case of graphs, but so are other data structures used in NLP. Multi-

word expressions, coreference, syntax, semantics, discourse, and many more types of structured

analyses are either annotated directly as a labeled directed graph (e.g., Copestake et al., 2005; Hajič

et al., 2012; Banarescu et al., 2013; Silveira et al., 2014), or are easily convertible to one (e.g.,

3



Baker et al., 2007; Surdeanu et al., 2008). Sequences are representable as a a linear chain, which

is a special case of a graph (see the gray “+” arcs in Figure 1.1, for example). Arcs of a graph

have a source node and a destination node, and so naturally represent binary relationships, but

non-binary relations (like in a logical form, for example) can be handled by the introduction of

new nodes, as in neo-Davidsonian semantics (Parsons, 1990). In other words, graphs are extremely

general. If our two research questions can be answered, and we can find effective graph encoders

and decoders, then we have tools for working with all of these formalisms, and can use the same

generic framework for any stage in a core NLP pipeline. Special cases of graphs like sequences and

trees often have specialized algorithms that are more efficient, but specialized algorithms require

specialized implementations, and there is definite value in developing tools that work for any or

all representations out of the box. We also note that even some syntactic formalisms are moving

toward non-tree graphs (de Marneffe et al., 2014). Furthermore, as we show in Chapter 3, the union

of multiple linguistic analyses can be combined into a single multigraph, leading to improved

performance. Even if the individual analyses are trees or sequences, their union will not be, and so

in such multi-task learning scenarios general purpose graph algorithms are needed.

Our main interest is in single-sentence semantics, for which labeled directed graphs are an

especially natural and flexible representation. Semantic graphs tend to have certain characteristics,

which we tailor our algorithms toward to some extent. The nodes in a linguistic graph can be

labeled, often with the name of a concept, entity, or event. Nodes can be grounded in spans from the

sentence or they can be abstract. Arcs between nodes are labeled with a linguistic relationship that

holds between the nodes, and the relationships are usually asymmetric, requiring the use of directed

arcs. There tend to be O(n) nodes and O(n) arcs for a sentence with n tokens.1 Semantic graphs

tend to be connected, reflecting the fact that sentences often express a single coherent statement or

question. See Figure 1.1 for an example sentence with several kinds of annotations.

1With this in mind,O(n3) algorithms are often acceptable (as in Section 5.3), but NP-hard problems (as in Chapter 4)
are not, and require approximate algorithms.
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This thesis makes four main contributions.

• First, in Chapter 2, we introduce an arc-factored model for semantic dependency pars-

ing (SDP; Oepen et al., 2014, 2015). We explore a variety of features and graph constraints,

doing extensive empirical comparisons to find practical model choices for each of the three

SDP formalisms.

• In Chapter 3, we introduce Neural Turbo Parsing (NeurboParsing) and show that it is an

even more effective approach for semantic dependency parsing. Turbo parsing allows for

decoding with higher-order factors that score small motifs in the output graph. In particular

we show how NeurboParsing can be used for multitask semantic dependency parsing, where

we get state-of-the-art results in three SDP formalisms.

• Next (Chapter 4), we show that the problem of decoding connected semantic graphs is

an extension of a classic, well-studied problem in network optimization called the prize-

collecting Steiner tree (PCST) problem (Goemans and Williamson, 1992). This allows us

to prove theoretical properties about decoding under certain graph constraints, and to adapt

and extend existing PCST solving techniques to decoding semantic graphs.

• In Chapter 5, we introduce two new lawful neural encoders, Soft Patterns (SoPa) and

Kleene Graph Encoder Networks (KGEN) whose constrained forms allow for efficient

exact inference. SoPa encodes sequences using an array of small neurally-weighted finite

state automata, and we test it on text classification. KGEN extends SoPa in order to encode

graphs. The resulting output of KGEN is as if every path in a graph had been encoded with a

SoPa-like sequence model, then grouped by source and destination, then max-pooled. Even

though there are infinitely many paths in a graph, this can be done efficiently with dynamic

programming.

Chapters 2–4 work toward better graph decoding, and Chapter 5 is devoted to graph encoding.

These contributions together are aimed toward a generic graph-to-graph pipeline for structured

5



prediction. Given any task where one must predict some structured output y ∈ Y given some

structured input x ∈ X :

1. convert x and y to multigraphs Gx and Gy, respectively,

2. encode x as a contextualized tensor vx, and

3. decode y, conditioned on vx.

While not the only options, we demonstrate in this thesis that KGEN is an effective method for step

2, and that NeurboParsing is an effective approach for step 3. Our experiments are tailored toward

broad-coverage semantic dependency parsing, but our methods have much broader potential impact

because they apply generally to graphs.

6



Chapter 2

Arc-factored Semantic Dependency Parsing

∗ Semantic dependencies are a form of semantic graph representation where the tokens of a

sentence themselves are the nodes of the graph. The arcs represent semantic relations between all

content-bearing words in a sentence. In this chapter, we explore how varying sets of features and

constraints affect semantic dependency parsing performance in a linear, arc-factored model.

We present in this chapter two systems that produce semantic dependency parses in the three

formalisms of the SemEval Shared Tasks on Broad-Coverage Semantic Dependency Parsing (Oepen

et al., 2014, 2015). We describe the task and data in §2.1. These systems generate parses by

extracting features for each potential dependency arc and learning a statistical model to discriminate

between good arcs and bad; the first treats each labeled edge decision as an independent multiclass

logistic regression (§2.2.2), while the second predicts arcs as part of a graph-based structured

support vector machine (§2.2.2). Common to both models is a rich set of features on arcs, described

in §2.2.2. We include a discussion of features found to have no discernible effect, or negative effect,

during development (§2.4).

Our system placed second in the open track of the SemEval 2014 Shared Task 8 on Broad-

∗The work described in this chapter was done with Brendan O’Connor, Jeffrey Flanigan, David Bamman, Jesse
Dodge, Swabha Swayamdipta, Nathan Schneider, Chris Dyer, and Noah A. Smith, and published as Thomson et al.
(2014).
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DM PAS PSD

id ood id ood id ood

# labels 59 47 42 41 91 74
% trees 2.3 9.7 1.2 2.4 42.2 51.4
% projective 2.9 8.8 1.6 3.5 41.9 54.4

Table 2.1: Graph statistics for in-domain (WSJ, “id”) and out-of-domain (Brown corpus, “ood”)
data. Numbers taken from Oepen et al. (2015).

Coverage Semantic Dependency Parsing task (in which output from syntactic parsers and other

outside resources can be used). We present our results in §2.3. In Chapter 3, we improve on this

work by showing that the multiple semantic dependency formalisms can be decoded jointly, with

higher-order neural factors that model the formalisms’ correlations with each other. This multitask

learning approach gives us state-of-the art performance on all three formalisms in the SDP shared

task.

2.1 Broad-Coverage Semantic Dependency Parsing (SDP)

First defined in a SemEval 2014 shared task (Oepen et al., 2014), and then extended by Oepen

et al. (2015), the broad-coverage semantic dependency parsing (SDP) task is centered around three

semantic formalisms whose annotations have been converted into bilexical dependencies. Broad-

coverage semantic dependency parsing aims to provide a shallow semantic analysis of text not

limited to a specific application domain. As distinct from deeper semantic analysis (e.g., parsing to

a full lambda-calculus logical form), shallow semantic parsing captures relationships between pairs

of words or concepts in a sentence, and has wide application for information extraction, knowledge

base population, and question answering (among others). See Figure 2.1 for an example. The

formalisms come from varied linguistic traditions, but all three aim to capture predicate-argument

relations between content-bearing words in a sentence.

While at first glance similar to syntactic dependencies, semantic dependencies have distinct

8



goals and characteristics, more akin to semantic role labeling (SRL; Gildea and Jurafsky, 2002) or

the abstract meaning representation (AMR; Banarescu et al., 2013). They abstract over different

syntactic realizations of the same or similar meaning (e.g., “She gave me the ball.” vs. “She

gave the ball to me.”). Conversely, they attempt to distinguish between different senses even when

realized in similar syntactic forms (e.g., “I baked in the kitchen.” vs. “I baked in the sun.”).

Structurally, they are labeled directed graphs whose vertices are tokens in the sentence. This is

in contrast to AMR whose vertices are abstract concepts, with no explicit alignment to tokens, which

makes parsing more difficult (Flanigan et al., 2014). Their arc labels encode broadly-applicable

semantic relations rather than being tailored to any specific downstream application or ontology.1

They are not necessarily trees, because a token may be an argument of more than one predicate

(e.g., in “John wants to eat,” John is both the wanter and the would-be eater). Their analyses may

optionally leave out non–content-bearing tokens, such as punctuation or the infinitival “to,” or

prepositions that simply mark the type of relation holding between other words. But when restricted

to content-bearing tokens (including adjectives, adverbs, etc.), the subgraph is connected. In this

sense, SDP provides a whole-sentence analysis. This is in contrast to PropBank-style SRL, which

gives an analysis of only verbal and nominal predicates (Palmer et al., 2005). Semantic dependency

graphs also tend to have higher levels of non-projectivity than syntactic trees (Oepen et al., 2014).

Sentences with graphs containing cycles have been removed from the dataset by the organizers, so

all remaining graphs are directed acyclic graphs. The three formalisms also have “top” annotations,

corresponding roughly to the semantic focus of the sentence. A “top” need not be a root of the

graph. Because they have the same format and follow roughly the same constraints, this allows us

to use the same machinery (§2.2) for training and testing statistical models for the three formalisms.

We will see in the next chapter that it also makes the tasks amenable to multitask learning. Table 2.1

summarizes some of the dataset’s high-level statistics.

1This may make another disambiguation step necessary to use these representations in a downstream task, but there
is evidence that modeling semantic composition separately from grounding in any ontology is an effective way to
achieve broad coverage (Kwiatkowski et al., 2013).

9



Formalisms. Following the SemEval shared tasks, we consider three formalisms. The DM

(DELPH-IN MRS) representation comes from DeepBank (Flickinger et al., 2012), which are

manually-reranked parses from the LinGO English Resource Grammar (Copestake and Flickinger,

2000). LinGO is a head-driven phrase structure grammar (HPSG; Pollard and Sag, 1994) whose

syntactic derivations simultaneously produce MRS graphs. The PAS (Predicate-Argument Struc-

tures) representation is extracted from the Enju Treebank, which consists of automatic parses from

the Enju HPSG parser (Miyao, 2006). PAS annotations are also available for the Penn Chinese

Treebank (Xue et al., 2005). The PSD (Prague Semantic Dependencies) representation is extracted

from the tectogrammatical layer of the Prague Czech-English Dependency Treebank (Hajič et al.,

2012). PSD annotations are also available for a Czech translation of the WSJ Corpus. In this work,

we train and evaluate only on English annotations. Of the three, PAS follows syntax most closely,

and prior work has found it the easiest to predict. PSD has the largest set of labels, and parsers have

significantly lower performance on it (Oepen et al., 2015).

2.2 Models

We treat the problem as a three-stage pipeline. The first stage prunes words by predicting whether

they have any incoming or outgoing edges at all (§2.2.1); if a word does not, then it is not considered

for any attachments in later stages. The second stage predicts where edges are present, and

their labels (§2.2.2). The third stage predicts whether a predicate word is a top or not (§2.2.3).

Formalisms sometimes annotate more than one “top” per sentence, but we found that we achieve the

best performance on all formalisms by predicting only the one best-scoring “top” under the model.

2.2.1 Singleton Classification

For each formalism, we train a classifier to recognize singletons, nodes that have no parents or

children. (For example, punctuation tokens are often singletons.) This makes the system faster

10



without affecting accuracy. For singleton prediction, we use a token-level logistic regression

classifier, with features including the word, its lemma, and its part-of-speech tag. If the classifier

predicts a probability of 99% or higher the token is pruned; this removes around 10% of tokens.

(The classifier performs differently on different formalisms; on PAS it has perfect accuracy, while

on DM and PSD accuracy is in the mid-90’s.)

2.2.2 Edge Prediction

In the second stage of the pipeline, we predict the set of labeled directed edges in the graph. We

use the same set of edge-factored features (§2.2.2) in two alternative models: an edge-independent

multiclass logistic regression model (LOGISTICEDGE, §2.2.2); and a structured SVM (Taskar et al.,

2003; Tsochantaridis et al., 2004) that enforces a determinism constraint for certain labels, which

allows each word to have at most one outgoing edge with that label (SVMEDGE, §2.2.2). For each

formalism, we trained both models with varying features enabled and hyperparameter settings

and submitted the configuration that produced the best labeled F1 on the development set. For

DM and PSD, this was LOGISTICEDGE; for PAS, this was SVMEDGE. We report results only

for the submitted configurations, with different features enabled. Due to time constraints, full

hyperparameter sweeps and comparable feature sweeps were not possible.

LOGISTICEDGE Parser

The LOGISTICEDGE model considers only token index pairs (i, j) where |i− j| ≤ 10, i 6= j, and

both ti and tj have been predicted to be non-singletons by the first stage. Although this prunes some

gold edges, among the formalisms, 95%–97% of all gold edges are between tokens of distance 10

or less. Both directions i→ j and j → i are considered between every pair.

Let L be the set of K + 1 possible output labels: the formalism’s original K edge labels, plus

the additional label NOEDGE, which indicates that no edge exists from i to j. The model treats

every pair of token indices (i, j) as an independent multiclass logistic regression over output space
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L. Let x be an input sentence. For candidate parent index i, child index j, and edge label `, we

extract a feature vector f(x, i, j, `), where ` is conjoined with every feature described in §2.2.2. The

multiclass logistic regression model defines a distribution over L, parameterized by weights φ:

P (` | φ, x, i, j) =
exp{φ · f(x, i, j, `)}∑
`′∈L exp{φ · f(x, i, j, `′)} . (2.1)

φ is learned by minimizing total negative log-likelihood of the above (with weighting; see below),

plus `2 regularization. AdaGrad (Duchi et al., 2011) is used for optimization. This seemed to

optimize faster than L-BFGS (Liu and Nocedal, 1989), at least for earlier iterations, though we

did no systematic comparison. Stochastic gradient steps are applied one at a time from individual

examples, and a gradient step for the regularizer is applied once per epoch.

The output labels have a class imbalance; in all three formalisms, there are many more

NOEDGE examples than true edge examples. We improved F1 performance by downweighting

NOEDGE examples through a weighted log-likelihood objective,
∑

i,j

∑
`w` logP (` |φ, x, i, j),

with wNOEDGE = 0.3 (selected on development set) and w` = 1 otherwise.

Decoding: To predict a graph structure at test-time for a new sentence, the most likely edge label

is predicted for every candidate (i, j) pair of unpruned tokens. If an edge is predicted for both

directions for a single (i, j) pair, only the edge with the higher score is chosen. (There are no such

bidirectional edges in the training data.) This post-processing actually did not improve accuracy on

DM or PSD; it did improve PAS by ≈0.2% absolute F1, but we did not submit LOGISTICEDGE for

PAS.

SVMEDGE Parser

In the SVMEDGE model, we use a structured SVM with a determinism constraint. This constraint

ensures that each word token has at most one outgoing edge for each label in a set of deterministic

labels Ld. For example, in DM a predicate never has more than one child with edge label “ARG1.”
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Ld was chosen to be the set of edges that were > 99.9% deterministic in the training data.2

Consider the fully dense graph of all edges between all words predicted as not singletons by

the singleton classifier §2.2.1 (in all directions with all possible labels). Unlike LOGISTICEDGE,

the label set L does not include an explicit NOEDGE label. If ψ denotes the model weights, and f

denotes the features, then an edge from i to j with label ` in the dense graph has a weight c(i, j, `)

assigned to it using the linear scoring function c(i, j, `) = ψ · f(x, i, j, `).

Decoding: For each node and each label `, if ` ∈ Ld, the decoder adds the highest scoring outgoing

edge, if its weight is positive. For ` 6∈ Ld, every outgoing edge with positive weight is added. This

procedure is guaranteed to find the highest scoring subgraph (largest sum of edge weights) of the

dense graph subject to the determinism constraints. Its runtime is O(n2).

The model weights are trained using the structured hinge loss (Tsochantaridis et al., 2004).

If x is a sentence and y is a graph over that sentence, let the features be denoted f(x, y) =
∑

(i,j,`)∈y f(x, i, j, `). The structured hinge loss for each training example (xi, yi) is:

−ψ>f(xi, yi) + max
y
{ψ>f(xi, y) + cost(y, yi)} (2.2)

where cost(y, yi) = α|y \ yi| + β|yi \ y|. α and β trade off between precision and recall for the

edges (Gimpel and Smith, 2010). The loss is minimized with AdaGrad using early-stopping on a

development set.

Edge Features

Table 2.2 describes the features we used for predicting edges. These features were computed over

an edge e with parent token s at index i and child token t at index j. Unless otherwise stated, each

feature template listed has an indicator feature that fires for each value it can take on. For the

2By this we mean that of the nodes that have at least one outgoing ` edge, 99.9% of them have only one outgoing
` edge. For DM, Ld = L\{“ and c,” “ or c,” “ then c,” “loc,” “mwe,” “subord”}; for PAS, Ld = L; and for PSD,
Ld ={“DPHR,” “INTF,” “VOCAT”}.
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submitted results, LOGISTICEDGE uses all features except Dependency Path v2, POS Path, and

Distance Thresholds, and SVMEDGE uses all features except Dependency Path v1. This was due to

SVMEDGE being faster to train than LOGISTICEDGE when including POS Path features, and due to

time constraints for the submission we were unable to retrain LOGISTICEDGE with these features.

Feature Hashing

The biggest memory usage was in the map from feature names to integer indices during feature

extraction. For experimental expedience, we implemented multitask feature hashing (Weinberger

et al., 2009), which hashes feature names to indices, under the theory that errors due to collisions

tend to cancel. No drop in accuracy was observed.

2.2.3 Top Prediction

We trained a separate token-level binary logistic regression model to classify whether a token’s

node had the “top” attribute or not. At decoding time, all predicted predicates (i.e., nodes where

there is at least one outbound edge) are possible candidates to be “top”; the classifier probabilities

are evaluated, and the highest-scoring node is chosen to be “top.” This is suboptimal, since some

graphs have multiple tops (in PSD this is more common); but selection rules based on probability

thresholds gave worse F1 performance on the dev set. For a given token t at index i, the top

classifier’s features included t’s POS tag, i, those two conjoined, and the depth of t in the syntactic

dependency tree.

2.3 Experiments and Results

We participated in the Open Track, and used the syntactic dependency parses supplied by the

organizers. Feature engineering was performed on a development set (§20), training on §§00–19.

We evaluate labeled precision (LP), labeled recall (LR), labeled F1 (LF), and labeled whole-sentence
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Tokens: The tokens s and t themselves.
Lemmas: Lemmas of s and t.
POS tags: Part of speech tags of s and t.
Linear Order: Fires if i < j.
Linear Distance: i− j.
Dependency Path v1 (LOGISTICEDGE only): The concatenation of all POS tags, arc labels and
up/down directions on the path in the syntactic dependency tree from s to t. Conjoined with s, with
t, and without either.
Dependency Path v2 (SVMEDGE only): Same as Dependency Path v1, but with the lemma of s
or t instead of the word, and substituting the token for any “IN” POS tag.
Up/Down Dependency Path: The sequence of upward and downward moves needed to get from s
to t in the syntactic dependency tree.
Up/Down/Left/Right Dependency Path: The unlabeled path through the syntactic dependency
tree from s to t, annotated with whether each step through the tree was up or down, and whether it
was to the right or left in the sentence.
Is Parent: Fires if s is the parent of t in the syntactic dependency parse.
Dependency Path Length: Distance between s and t in the syntactic dependency parse.
POS Context: Concatenated POS tags of tokens at i− 1, i, i+ 1, j− 1, j, and j+ 1. Concatenated
POS tags of tokens at i− 1, i, j− 1, and j. Concatenated POS tags of tokens at i, i+ 1, j, and j+ 1.
Subcategorization Sequence: The sequence of dependency arc labels out of s, ordered by the
index of the child. Distinguish left children from right children. If t is a direct child of s, distinguish
its arc label with a “+”. Conjoin this sequence with the POS tag of s.
Subcategorization Sequence with POS: As above, but add the POS tag of each child to its arc
label.
POS Path (SVMEDGE only): Concatenated POS tags between and including i and j. Conjoined
with head lemma, with dependent lemma, and without either.
Distance Thresholds (SVMEDGE only): Fires for every integer between 1 and blog(|i − j| +
1)/ log(1.39)c inclusive.

Table 2.2: Features used in edge prediction
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LP LR LF LM

DM 0.8446 0.8348 0.8397 0.0875
PAS 0.9078 0.8851 0.8963 0.2604
PSD 0.7681 0.7072 0.7364 0.0712

Average 0.8402 0.8090 0.8241 0.1397

Table 2.3: Labeled precision (LP), recall (LR), F1 (LF), and whole-sentence match (LM) on the
held-out (in-domain) test data.

DM PAS PSD Avg.

CMU (ours) 0.8397 0.8963 0.7364 0.8241
M&A 0.8916 0.9176 0.7790 0.8627

Table 2.4: Labeled F1 on the held-out (in-domain) test data.

match (LM) on the held-out test data using the evaluation script provided by the organizers. LF

was averaged over the formalisms to determine the winning system. Table 2.3 shows a detailed

breakdown of our scores. In Table 2.4, we compare our labeled F1 to that of the winning system,

due to Martins and Almeida (2014). The winning system took a graph-based approach similar to

ours. Their main improvement over our system was a set of second-order features, used to score

adjacent arcs, with inference via AD3 (Martins et al., 2011). They resubmitted a similar system to

the 2015 version of the shared task. In the next chapter, we build off of their 2015 model.
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Figure 2.1: An example sentence annotated with the three semantic formalisms of the broad-
coverage semantic dependency parsing shared tasks.
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Word vectors: Features derived from 64-dimensional vectors from (Faruqui and Dyer, 2014),
including the concatenation, difference, inner product, and element-wise multiplication of the two
vectors associated with a parent-child edge. We also trained a Random Forest on the word vectors
using Liaw and Wiener’s (2002) R implementation. The predicted labels were then used as features
in LOGISTICEDGE.
Brown clusters: Features derived from Brown clusters (Brown et al., 1992) trained on a large
corpus of web data. Parent, child, and conjoined parent-child edge features from cluster prefixes of
length 2, 4, 6, 8, 10, and 12. Conjunctions of those features with the POS tags of the parent and
child tokens.
Active/passive: Active/passive voice feature (as in Johansson and Nugues (2008)) conjoined with
both the Linear Distance features and the Subcategorization Sequence features. Voice information
may already be captured by features from the Stanford dependency–style parses, which include
passivization information in arc labels such as nsubjpass and auxpass (de Marneffe and Manning,
2008).
Connectivity constraint: Enforcing that the graph is connected (ignoring singletons), similar to
Flanigan et al. (2014). Almost all semantic dependency graphs in the training data are connected
(ignoring singletons), but we found that enforcing this constraint significantly hurt precision.
Tree constraint: Enforces that the graph is a tree. Unsurprisingly, as most graphs are not trees, we
found that enforcing a tree constraint hurt performance.

Table 2.5: Features and constraints giving negative results.

2.4 Negative Results

We followed a forward-selection process during feature engineering. For each potential feature, we

tested the current feature set versus the current feature set plus the new potential feature. If the new

feature did not improve performance, we did not add it. We list in table 2.5 some of the features

which we tested but did not improve performance.

In order to save time, we ran these feature selection experiments on a subsample of the training

data, for a reduced number of iterations. These results thus come with the strong caveat that the

experiments were not exhaustive. It may be that some of these features could help under more

careful study.
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2.5 Conclusion

We found that feature-rich discriminative models perform well at the task of mapping from sentences

to semantic dependency parses. We also noted additional features and constraints which did not

appear to help (contrary to expectation). There are a number of clear extensions to this work

that could potentially improve performance. While an edge-factored model allows for efficient

inference, there is much to be gained from higher-order features (McDonald and Pereira, 2006;

Martins et al., 2013). The amount of information shared between the three formalisms suggests that

a multitask learning (Evgeniou and Pontil, 2004) framework could lead to gains. In fact, in the

following chapter we introduce an improved model that explores both of these ideas, additionally

replacing hand-engineered features with recurrent neural factors. Also, there is structure in the

formalisms which we did not exploit (such as the deterministic processes by which an original

PCEDT tree annotation was converted into a graph); formulating more subtle graph constraints to

capture this a priori knowledge could lead to improved performance.
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Chapter 3

Neural Turbo Semantic Parsing

∗ In this chapter, we hypothesize that the overlap among theories and their corresponding represen-

tations can be exploited using multitask learning (Caruana, 1997), allowing us to learn from more

data. We again use the SemEval shared task on Broad-Coverage Semantic Dependency Parsing

(SDP; Oepen et al., 2015) as our testbed. The shared task provides an English-language corpus with

parallel annotations for three semantic graph representations, described in §2.1. Though the shared

task was designed in part to encourage comparison between the formalisms, we are the first to treat

SDP as a multitask learning problem.

As a strong baseline, we introduce a new neural system that parses each formalism separately

(§3.1). It uses a bidirectional-LSTM composed with a multi-layer perceptron to score arcs and

predicates, and has efficient, nearly arc-factored inference. Experiments show it significantly

improves on state-of-the-art methods (§3.1.4).

We then present two multitask extensions (§3.2.2 and §3.2.3), with a parameterization and

factorization that implicitly models the relationship between multiple formalisms. Experiments show

that both techniques improve over our basic model, with an additional (but smaller) improvement

when they are combined (§3.2.4). Our analysis shows that the improvement in unlabeled F1 is

∗The work described in this chapter was done with Hao Peng and Noah A. Smith, and published as Peng et al.
(2017a).
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greater for the two formalisms that are more structurally similar, and suggests directions for future

work. Finally, we survey related work (§3.3), and summarize our contributions and findings (§3.4).

3.1 Single-Task SDP

Here we introduce our basic model, in which training and prediction for each formalism is kept

completely separate, as in Chapter 2. We also lay out basic notation, which will be reused for our

multitask extensions.

3.1.1 Problem Formulation

The output of semantic dependency parsing is a labeled directed graph (see Figure 2.1). Each

arc has a label from a predefined set L, indicating the semantic relation of the child to the head.

Given input sentence x, let Y(x) be the set of possible semantic graphs over x. The graph we seek

maximizes a score function S:

ŷ = arg max y ∈ Y(x)S(x, y), (3.1)

We decompose S into a sum of local scores s for local structures (or “parts”) p in the graph:

S(x, y) =
∑

p∈y

s(p). (3.2)

For notational simplicity, we omit the dependence of s on x. See Figure 3.1a for examples of local

structures. s is a parameterized function, whose parameters (denoted Θ and suppressed here for

clarity) will be learned from the training data (§3.1.3). Since we search over every possible labeled

graph (i.e., considering each labeled arc for each pair of words), our approach can be considered

a graph-based (or all-pairs) method. The models presented in this work all share this common
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Figure 3.1: Examples of local structures. We refer to the number of arcs that a structure contains as
its order.

graph-based approach, differing only in the set of structures they score and in the parameterization

of the scoring function s. This approach also underlies state-of-the-art approaches to SDP (Martins

and Almeida, 2014).

3.1.2 Basic Model

Our basic model is inspired by recent successes in neural arc-factored graph-based dependency

parsing (Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017; Kuncoro et al., 2016). It

borrows heavily from the neural arc-scoring architectures in those works, but decodes with a

different algorithm under slightly different constraints.

Basic Structures

Our basic model factors over three types of structures (p in Equation 3.2):

• predicate, indicating a predicate word, denoted i→·;
• unlabeled arc, representing the existence of an arc from a predicate to an argument, denoted

i→j;
• labeled arc, an arc labeled with a semantic role, denoted i `→ j.

Here i and j are word indices in a given sentence, and ` indicates the arc label. This list corresponds
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to the most basic structures used by Martins and Almeida (2014). Selecting an output y corresponds

precisely to selecting which instantiations of these structures are included.

To ensure the internal consistency of predictions, the following constraints are enforced during

decoding:

• i→· if and only if there exists at least one j such that i→j;
• If i→j, then there must be exactly one label ` such that i `→ j. Conversely, if not i→j, then

there must not exist any i `→ j;

We also enforce a determinism constraint (Flanigan et al., 2014): certain labels must not appear

on more than one arc emanating from the same token. The set of deterministic labels is decided

based on their appearance in the training set. Notably, we do not enforce that the predicted graph

is connected or spanning. If not for the predicate and determinism constraints, our model would

be arc-factored, and decoding could be done for each i, j pair independently. Our structures do

overlap though, and we employ AD3 (Martins et al., 2011) to find the highest-scoring internally

consistent semantic graph. AD3 is an approximate discrete optimization algorithm based on dual

decomposition. It can be used to decode factor graphs over discrete variables when scored structures

overlap, as is the case here.

Basic Scoring

Similarly to Kiperwasser and Goldberg (2016), our model learns representations of tokens in

a sentence using a bi-directional LSTM (BiLSTM). Each different type of structure (predicate,

unlabeled arc, labeled arc) then shares these same BiLSTM representations, feeding them into a

multilayer perceptron (MLP) which is specific to the structure type. We present the architecture

slightly differently from prior work, to make the transition to the multitask scenario (§3.2) smoother.

In our presentation, we separate the model into a function φ that represents the input (corresponding

to the BiLSTM and the initial layers of the MLPs), and a function ψ that represents the output
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(corresponding to the final layers of the MLPs), with the scores given by their inner product.1

Distributed input representations. Long short-term memory networks (LSTMs) are a variant

of recurrent neural networks (RNNs) designed to alleviate the vanishing gradient problem in RNNs

(Hochreiter and Schmidhuber, 1997). A bi-directional LSTM (BiLSTM) runs over the sequence in

both directions (Schuster and Paliwal, 1997; Graves, 2012).

Given an input sentence x and its corresponding part-of-speech tag sequence, each token is

mapped to a concatenation of its word embedding vector and POS tag vector. Two LSTMs are

then run in opposite directions over the input vector sequence, outputting the concatenation of the

two hidden vectors at each position i: hi =
[−→
h i;
←−
h i

]
(we omit hi’s dependence on x and its own

parameters). hi can be thought of as an encoder that contextualizes each token conditioning on all

of its context, without any Markov assumption. h’s parameters are learned jointly with the rest of

the model (§3.1.3); we refer the readers to Cho (2015) for technical details.

The input representation φ of a predicate structure depends on the representation of one word:

φ(i→·) = tanh
(
Cpredhi + bpred

)
. (3.3a)

For unlabeled arc and labeled arc structures, it depends on both the head and the modifier (but not

the label, which is captured in the distributed output representation):

φ(i→j) = tanh
(
CUA

[
hi;hj

]
+ bUA

)
, (3.3b)

φ(i
`→ j) = tanh

(
CLA

[
hi;hj

]
+ bLA

)
. (3.3c)

Distributed output representations. NLP researchers have found that embedding discrete output

labels into a low dimensional real space is an effective way to capture commonalities among them

(e.g., Srikumar and Manning, 2014; Hermann et al., 2014; FitzGerald et al., 2015). In neural

1For clarity, we present single-layer BiLSTMs and MLPs, while in practice we use two layers for both.
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Figure 3.2: Illustration of the architecture of the basic model. i and j denote the indices of tokens
in the given sentence. The figure depicts single-layer BiLSTM and MLPs, while in practice we use
two layers for both.

language models (e.g., Bengio et al., 2003; Mnih and Hinton, 2007) the weights of the output layer

could also be regarded as an output embedding.

We associate each first-order structure p with a d-dimensional real vector ψ(p) which does not

depend on particular words in p. Predicates and unlabeled arcs are each mapped to a single vector:

ψ(i→·) = ψpred, (3.4a)

ψ(i→j) = ψUA, (3.4b)
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and each label gets a vector:

ψ(i
`→ j) = ψLA(`). (3.4c)

Scoring. Finally, we use an inner product to score first-order structures:

s(p) = φ(p) ·ψ(p). (3.5)

Figure 3.2 illustrates our basic model’s architecture.

3.1.3 Learning

The parameters of the model are learned using a max-margin objective. Informally, the goal is to

learn parameters for the score function so that the gold parse is scored over every incorrect parse

with a margin proportional to the cost of the incorrect parse. More formally, let D =
{

(xi, yi)
}N
i=1

be the training set consisting of N pairs of sentence xi and its gold parse yi. Training is then the

following `2-regularized empirical risk minimization problem:

min
Θ

λ

2
‖Θ‖2 +

1

N

N∑

i=1

L
(
xi, yi; Θ

)
, (3.6)

where Θ is the collection of all parameters in the model, and L is the structured hinge loss:

L
(
xi, yi; Θ

)
= max
y∈Y(xi)

{
S
(
xi, y

)
+ c
(
y, yi

)}
− S

(
xi, yi

)
. (3.7)

c is a weighted Hamming distance that trades off between precision and recall (Taskar et al., 2004).

Following Martins and Almeida (2014), we encourage recall over precision by using the costs 0.6

for false negative arc predictions and 0.4 for false positives.
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Model DM PAS PSD Avg.

id
Du et al., 2015 89.1 91.3 75.7 86.3
A&M, 2015 88.2 90.9 76.4 86.0
BASIC 89.4 92.2 77.6 87.4

ood
Du et al., 2015 81.8 87.2 73.3 81.7
A&M, 2015 81.8 86.9 74.8 82.0
BASIC 84.5 88.3 75.3 83.6

Table 3.1: Labeled parsing performance (F1 score) on both in-domain (id) and out-of-domain (ood)
test data. The last column shows the micro-average over the three tasks. Bold font indicates best
performance without syntax. Underlines indicate statistical significance with Bonferroni (1936)
correction compared to the best baseline system.3

3.1.4 Experiments

We evaluate our basic model on the English dataset from SemEval 2015 Task 18 closed track.2

We split as in previous work (Almeida and Martins, 2015; Du et al., 2015), resulting in 33,964

training sentences from §00–19 of the WSJ corpus, 1,692 development sentences from §20, 1,410

sentences from §21 as in-domain test data, and 1,849 sentences sampled from the Brown Corpus as

out-of-domain test data.

The closed track differs from the open and gold tracks in that it does not allow access to any

syntactic analyses. In the open track, additional machine generated syntactic parses are provided,

while the gold-track gives access to various gold-standard syntactic analyses. Our model is evaluated

with closed track data; it does not have access to any syntactic analyses during training or test.

We refer the readers to §A.1 for implementation details, including training procedures, hyperpa-

rameters, pruning techniques, etc..

Empirical results. As our model uses no explicit syntactic information, the most comparable

models to ours are two state-of-the-art closed track systems due to Du et al. (2015) and Almeida

and Martins (2015). Du et al. (2015) rely on graph-tree transformation techniques proposed by Du

2http://sdp.delph-in.net
3Paired bootstrap, p < 0.05 after Bonferroni correction.
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et al. (2014), and apply a voting ensemble to well-studied tree-oriented parsers. Closely related to

ours is Almeida and Martins (2015), who used rich, hand-engineered second-order features and

AD3 for inference.

Table 3.1 compares our basic model to both baseline systems (labeled F1 score) on SemEval

2015 Task 18 test data. Scores of those systems are repeated from the official evaluation results. Our

basic model significantly outperforms the best published results with a 1.1% absolute improvement

on the in-domain test set and 1.6% on the out-of-domain test set.

3.2 Multitask SDP

We introduce two extensions to our single-task model, both of which use training data for all three

formalisms to improve performance on each formalism’s parsing task. We describe a first-order

model, where representation functions are enhanced by parameter sharing while inference is kept

separate for each task (§3.2.2). We then introduce a model with cross-task higher-order structures

that uses joint inference across different tasks (§3.2.3). Both multitask models use AD3 for decoding,

and are trained with the same margin-based objective, as in our single-task model.

3.2.1 Problem Formulation

We will use an additional superscript t ∈ T to distinguish the three tasks (e.g., y(t), φ(t)), where

T = {DM,PAS,PSD}. Our task is now to predict three graphs {y(t)}t∈T for a given input sentence

x. Multitask SDP can also be understood as parsing x into a single unified multigraph y =
⋃
t∈T y

(t).

Similarly to Equations 3.1–3.2, we decompose y’s score S(x, y) into a sum of local scores for local

structures in y, and we seek a multigraph ŷ that maximizes S(x, y).
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3.2.2 Multitask SDP with Parameter Sharing

A common approach when using BiLSTMs for multitask learning is to share the BiLSTM part of

the model across tasks, while training specialized classifiers for each task (Søgaard and Goldberg,

2016). In this spirit, we let each task keep its own specialized MLPs, and explore two variants of

our model that share parameters at the BiLSTM level.

The first variant consists of a set of task-specific BiLSTM encoders as well as a common one that

is shared across all tasks. We denote it FREDA. FREDA uses a neural generalization of “frustratingly

easy” domain adaptation (Daumé III, 2007; Kim et al., 2016b), where one augments domain-specific

features with a shared set of features to capture global patterns. Formally, let {h(t)}t∈T denote the

three task-specific encoders. We introduce another encoder h̃ that is shared across all tasks. Then a

new set of input functions {φ(t)}t∈T can be defined as in Equations 3.3a–3.3c, for example:

φ(t)(i
`→ j) = tanh

(
C

(t)
LA

[
h

(t)
i ;h

(t)
j ; h̃i; h̃j

]
+ b

(t)
LA

)
. (3.8)

The predicate and unlabeled arc versions are analogous. The output representations {ψ(t)} remain

task-specific, and the score is still the inner product between the input representation and the output

representation.

The second variant, which we call SHARED, uses only the shared encoder h̃, and doesn’t use

task-specific encoders {h(t)}. It can be understood as a special case of FREDA where the dimensions

of the task-specific encoders are 0.

3.2.3 Multitask SDP with Cross-Task Structures

In syntactic parsing, higher-order structures have commonly been used to model interactions

between multiple adjacent arcs in the same dependency tree (e.g., Carreras, 2007; Smith and Eisner,

2008; Martins et al., 2009; Zhang et al., 2014). Lluı́s et al. (2013), in contrast, used second-order
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structures to jointly model syntactic dependencies and semantic roles. Similarly, we use higher-order

structures across tasks instead of within tasks. In this work, we look at interactions between arcs

that share the same head and modifier.4 See Figures 3.1b and 3.1c for examples of higher-order

cross-task structures.

Higher-order structure scoring. Borrowing from Lei et al. (2014), we introduce a low-rank

tensor scoring strategy that, given a higher-order structure p, models interactions between the

first-order structures (i.e., arcs) p is made up of. This approach builds on and extends the parameter

sharing techniques in §3.2.2. It can either follow FREDA or SHARED to get the input representations

for first-order structures.

We first introduce basic tensor notation. The order of a tensor is the number of its dimensions.

The outer product of two vectors forms a second-order tensor (matrix) where [u⊗ v]i,j = uivj .

We denote the inner product of two tensors of the same dimensions by 〈·, ·〉, which first takes their

element-wise product, then sums all the elements in the resulting tensor.

For example, let p be a labeled third-order structure, including one labeled arc from each of

the three different tasks: p = {p(t)}t∈T . Intuitively, s(p) should capture every pairwise interaction

between the three input and three output representations of p. Formally, we want the score function

to include a parameter for each term in the outer product of the representation vectors: s(p) =

〈
W,
⊗

t∈T

(
φ(t)

(
p(t)
)
⊗ψ(t)

(
p(t)
))
〉
, (3.9)

where W is a sixth-order tensor of parameters.5

With typical dimensions of representation vectors, this leads to an unreasonably large number

4In the future we hope to model structures over larger motifs, both across and within tasks, to potentially capture
when an arc in one formalism corresponds to a path in another formalism, for example.

5This is, of course, not the only way to model interactions between several representations. For instance, one could
concatenate them and feed them into another MLP. Our preliminary experiments in this direction suggested that it may
be less effective given a similar number of parameters, but we did not run full experiments.
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of parameters. Following Lei et al. (2014), we upper-bound the rank of W by r to limit the number

of parameters (r is a hyperparameter, decided empirically). Using the fact that a tensor of rank at

most r can be decomposed into a sum of r rank-1 tensors (Hitchcock, 1927), we reparameterize W

to enforce the low-rank constraint by construction:

W =
r∑

j=1

⊗

t∈T

([
U

(t)
LA

]
j,:
⊗
[
V

(t)
LA

]
j,:

)
, (3.10)

where U(t)
LA,V

(t)
LA ∈ Rr×d are now our parameters. [·]j,: denotes the jth row of a matrix. Substituting

this back into Equation 3.9 and rearranging, the score function s(p) can then be rewritten as:

r∑

j=1

∏

t∈T

[
U

(t)
LAφ

(t)
(
p(t)
)]

j

[
V

(t)
LAψ

(t)
(
p(t)
)]

j
. (3.11)

We refer readers to Kolda and Bader (2009) for mathematical details.

For labeled higher-order structures our parameters consist of the set of six matrices, {U(t)
LA} ∪

{V(t)
LA}. These parameters are shared between second-order and third-order labeled structures.

Labeled second-order structures are scored as Equation 3.11, but with the product extending over

only the two relevant tasks. Concretely, only four of the representation functions are used rather than

all six, along with the four corresponding matrices from {U(t)
LA} ∪ {V

(t)
LA}. Unlabeled cross-task

structures are scored analogously, reusing the same representations, but with a separate set of

parameter matrices {U(t)
UA} ∪ {V

(t)
UA}.

Note that we are not doing tensor factorization; we are learning U
(t)
LA,V

(t)
LA,U

(t)
UA, and V

(t)
UA

directly, and W is never explicitly instantiated.

Inference and learning. Given a sentence, we use AD3 to jointly decode all three formalisms.6

The training objective used for learning is the sum of the losses for individual tasks. Hyperparam-

6Joint inference comes at a cost; our third-order model is able to decode roughly 5.2 sentences (i.e., 15.5 task-specific
graphs) per second on a single Xeon E5-2690 2.60GHz CPU.
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eters are the same as those in the basic model, and are described in Appendix A.1. One notable

difference is that we apply early stopping based on the micro-averaged labeled F1 score on the

development set.

3.2.4 Experiments

Experimental settings. We compare four multitask variants to the basic model, as well as the

two baseline systems introduced in §3.1.4.

• SHARED1 is a first-order model. It uses a single shared BiLSTM encoder, and keeps the

inference separate for each task.

• FREDA1 is a first-order model based on “frustratingly easy” parameter sharing. It uses a

shared encoder as well as task-specific ones. The inference is kept separate for each task.

• SHARED3 is a third-order model. It follows SHARED1 and uses a single shared BiLSTM

encoder, but additionally employs cross-task structures and inference.

• FREDA3 is also a third-order model. It combines FREDA1 and SHARED3 by using both

“frustratingly easy” parameter sharing and cross-task structures and inference.

In addition, we also examine the effects of syntax by comparing our models to the state-of-the-art

open track system (Almeida and Martins, 2015).7

Main results overview. Table 3.2 compares our models to the best published results (labeled F1

score) on SemEval 2015 Task 18. On the in-domain test set, our basic model improves over all

closed track entries in all formalisms. It is even with the best open track system for DM and PSD,

but improves on PAS and on average, without making use of any syntax. Three of our four multitask

variants further improve over our basic model; SHARED1’s differences are statistically insignificant.

Our best models (SHARED3, FREDA3) outperform the previous state-of-the-art closed track system

7Kanerva et al. (2015) was the winner of the gold track, which overall saw higher performance than the closed and
open tracks. Since gold-standard syntactic analyses are not available in most realistic scenarios, we do not include it in
this comparison.
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In-domain Out-of-domain

DM PAS PSD Avg. DM PAS PSD Avg.

Du et al., 2015 89.1 91.3 75.7 86.3 81.8 87.2 73.3 81.7
A&M, 2015 (closed) 88.2 90.9 76.4 86.0 81.8 86.9 74.8 82.0
A&M, 2015 (open)† 89.4 91.7 77.6 87.1 83.8 87.6 76.2 83.3
BASIC 89.4 92.2 77.6 87.4 84.5 88.3 75.3 83.6

SHARED1 89.7 91.9 77.8 87.4 84.4 88.1 75.4 83.5
FREDA1 90.0 92.3 78.1 87.7 84.9 88.3 75.8 83.9

SHARED3 90.3 92.5 78.5 88.0 85.3 88.4 76.1 84.1
FREDA3 90.4 92.7 78.5 88.0 85.3 89.0 76.4 84.4

Table 3.2: Labeled F1 score on the in-domain and out-of-domain test sets. The last columns show
the micro-average over the three tasks. † denotes the use of syntactic parses. Bold font indicates
best performance among all systems, and underlines indicate statistical significance with Bonferroni
correction compared to A&M, 2015 (open), the strongest baseline system.

by 1.7% absolute F1, and the best open track system by 0.9%, without the use of syntax.

We observe similar trends on the out-of-domain test set, with the exception that, on PSD, our

best-performing model’s improvement over the open-track system of Almeida and Martins (2015)

is not statistically significant.

The extent to which we might benefit from syntactic information remains unclear. With

automatically generated syntactic parses, Almeida and Martins (2015) manage to obtain more than

1% absolute improvements over their closed track entry, which is consistent with the extensive

evaluation by Zhang et al. (2016), but we leave the incorporation of syntactic trees to future work.

Syntactic parsing could be treated as yet another output task, as explored in Lluı́s et al. (2013) and

in the transition-based frameworks of Henderson et al. (2013) and Swayamdipta et al. (2016).

Effects of structural overlap. We hypothesized that the overlap between formalisms would

enable multitask learning to be effective; in this section we investigate in more detail how structural

overlap affected performance. By looking at undirected overlap between unlabeled arcs, we discover
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Undirected Directed

DM PAS PSD DM PAS PSD

DM - 67.2 56.8 - 64.2 26.1
PAS 70.0 - 54.9 66.9 - 26.1
PSD 57.4 56.3 - 26.4 29.6 -

Table 3.3: Pairwise structural similarities between the three formalisms in unlabeled F1 score.
Scores from Oepen et al. (2015).

that modeling only arcs in the same direction may have been a design mistake.

DM and PAS are more structurally similar to each other than either is to PSD. Table 3.3 compares

the structural similarities between the three formalisms in unlabeled F1 score (each formalism’s

gold-standard unlabeled graph is used as a prediction of each other formalism’s gold-standard

unlabeled graph). All three formalisms have more than 50% overlap when ignoring arcs’ directions,

but considering direction, PSD is clearly different; PSD reverses the direction about half of the

time it shares an edge with another formalism. A concrete example can be found in Figure 2.1,

where DM and PAS both have an arc from “Last” to “week,” while PSD has an arc from “week” to

“Last.”

We can compare FREDA3 to FREDA1 to isolate the effect of modeling higher-order structures.

Table 3.4 shows performance on the development data in both unlabeled and labeled F1. We can

see that FREDA3’s unlabeled performance improves on DM and PAS, but degrades on PSD. This

supports our hypothesis, and suggests that in future work, a more careful selection of structures to

model might lead to further improvements.

3.3 Related Work

We note two important strands of related work.
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DM PAS PSD

UF LF UF LF UF LF

FREDA1 91.7 90.4 93.1 91.6 89.0 79.8
FREDA3 91.9 90.8 93.4 92.0 88.6 80.4

Table 3.4: Unlabeled (UF ) and labeled (LF ) parsing performance of FREDA1 and FREDA3 on the
development set of SemEval 2015 Task 18.

Graph-based parsing. Graph-based parsing was originally invented to handle non-projective

syntax (e.g., McDonald et al., 2005; Koo et al., 2010; Martins et al., 2013), but has been adapted to

semantic parsing (e.g., Flanigan et al., 2014; Martins and Almeida, 2014; Thomson et al., 2014;

Kuhlmann, 2014). Local structure scoring was traditionally done with linear models over hand-

engineered features, but lately, various forms of representation learning have been explored to learn

feature combinations (e.g., Lei et al., 2014; Taub-Tabib et al., 2015; Pei et al., 2015). Our work is

perhaps closest to those who used BiLSTMs to encode inputs (Kiperwasser and Goldberg, 2016;

Kuncoro et al., 2016; Wang and Chang, 2016; Dozat and Manning, 2017; Ma and Hovy, 2016).

Multitask learning in NLP. There have been many efforts in NLP to use joint learning to replace

pipelines, motivated by concerns about cascading errors. Collobert and Weston (2008) proposed

sharing the same word representation while solving multiple NLP tasks. Zhang and Weiss (2016)

use a continuous stacking model for POS tagging and parsing. Ammar et al. (2016) and Guo

et al. (2016) explored parameter sharing for multilingual parsing. Johansson (2013) and Kshirsagar

et al. (2015) applied ideas from domain adaptation to multitask learning. Successes in multitask

learning have been enabled by advances in representation learning as well as earlier explorations of

parameter sharing (Ando and Zhang, 2005; Blitzer et al., 2006; Daumé III, 2007).
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3.4 Conclusion

We showed two orthogonal ways to apply deep multitask learning to graph-based parsing. The

first shares parameters when encoding tokens in the input with recurrent neural networks, and the

second introduces interactions between output structures across formalisms. Without using syntactic

parsing, these approaches outperform even state-of-the-art semantic dependency parsing systems

that use syntax. Because our techniques apply to labeled directed graphs in general, they can easily

be extended to incorporate more formalisms, semantic or otherwise. In future work we hope to

explore cross-task scoring and inference for tasks where parallel annotations are not available. Our

code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.
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Chapter 4

Graph-based Semantic Parsing as a Steiner

Problem

∗ Our next contribution is a theoretical one, with potential applications in semantic graph prediction.

We show that decoding graphs under a connected constraint but without a spanning constraint results

in an NP-hard problem, by reduction from the prize-collecting Steiner tree (PCST) problem (Goe-

mans and Williamson, 1992). We introduce the node-and-edge-weighted connected subgraph

(NEWCS) problem, an extension of PCST where both node and edge weights may be positive or

negative. The NEWCS problem naturally arises when jointly predicting the nodes and edges of a

semantic graph. In particular, formalisms such as the Abstract Meaning Representation (AMR;

Banarescu et al., 2013; Dorr et al., 1998) and Minimal Recursion Semantics (MRS; Copestake

et al., 2005) include abstract concept nodes that do not correspond directly to tokens in the sentence.

Parsing to these representations requires determining the set of labeled nodes in the graph, a subtask

dubbed concept identification. Concept identification for these formalisms is difficult (e.g., Wang

et al., 2015; Flanigan et al., 2016; Buys and Blunsom, 2017), which makes joint modeling of

∗The work described in this chapter was done jointly with Jeffrey Flanigan, Benjamin J. Plaut, and Noah A. Smith.
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concepts and edges an enticing direction to explore.1

We adapt two known techniques from PCST solving to NEWCS solving. First, we show that

the integer linear program that we previously used as a PCST solver (Liu et al., 2015) can be

extended to NEWCS solving (§4.3). Second, we combine our maximum spanning connected

graph (MSCG) algorithm (Flanigan et al., 2014) with a relaxation due to Beasley (1989) to

produce a novel approximate NEWCS solver (§4.4). We also introduce a novel set of tests which

can transform a NEWCS instance into an instance with fewer nodes (§4.5). An optimal solution to

the original problem instance can then be recovered from a solution for the reduced instance. Finally,

we note the connection of this work to other applications in natural language processing (§4.6).

4.1 Background

4.1.1 The Maximum Spanning Connected Graph Algorithm

In Flanigan et al. (2014) we introduced the maximum spanning connected graph algorithm (MSCG).

We don’t claim MSCG as a contribution of this thesis, but MSCG forms a core component of

our novel NEWCS algorithm (§4.4), so we review it here. The input to MSCG is an undirected

graph G = (VG, EG) with real-valued edge weights w(e) ∈ R,∀e ∈ EG, and it returns a spanning

connected subgraph H ⊆ G of maximal weight:

MSCG(G,w) = arg max
H⊆G,

H spanning,
H connected

∑

e∈EH

w(e). (4.1)

Only edge weights are considered, as spanning subgraphs must include every node.

The algorithm extends Kruskal’s algorithm for finding minimum spanning trees (Kruskal,

1956). Whereas Kruskal’s algorithm assumes that every edge weight is negative, MSCG handles

1Note that in semantic dependency parsing, concept identification is the same as singleton classification (§2.2.1).
Since classifying singletons can already be done with very high accuracy, we expect the findings in this chapter to be
more helpful for AMR and MRS than for SDP.
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nonnegative edges as well, and as a result may not output a tree. MSCG consists of two steps:

1. Add all edges with nonnegative weight in EG to EH .

2. Pick the least negative edge in EG that has not been considered yet. If it connects two

disconnected components in EH , add it to EH . Otherwise discard it.

Step 2 is repeated until the graph is connected. Flanigan et al. (2014) contains a proof that this

greedy algorithm gives the optimal solution. It requires sorting edges by weight, so its runtime is

O(|EG| log |EG|), which is O(n2 log n) when G is dense.

4.1.2 The Prize-collecting Steiner Tree Problem

First let us formally state the prize-collecting Steiner tree problem (Goemans and Williamson,

1992; Bienstock et al., 1993). Let G = (VG, EG) be an undirected graph with positive node

weights, w(v) ≥ 0, ∀v ∈ VG, and negative edge weights, w(e) ≤ 0,∀e ∈ EG. The prize-collecting

Steiner tree (PCST) problem is to find a connected (but not necessarily spanning) subgraph

H = (VH , EH) ⊆ G of maximal weight:

PCST(G,w) = arg max H⊆G,
H connected

{∑

v∈VH

w(v) +
∑

e∈EH

w(e)

}
. (4.2)

The node-weighted Steiner tree (NWST) problem is a similar variant which allows positive or

negative node weights (Segev, 1987). In both cases though, edge weights are required to be negative,

so the solution is guaranteed to be a tree.

Steiner problems are of interest to utility companies, for instance, who might wish to connect

paying customers to their grid in such a way as to maximize profits. PCST is an extension of

the original Steiner tree problem (in which every node has weight zero or infinity), and both are

NP-complete (Karp, 1972). Hundreds of papers have been written on variants of Steiner tree

problems; see (Hwang et al., 1992) for a survey. Remarkably, to the best of our knowledge, no work

has been done on the problem with unrestricted edge and node weights, and most techniques for
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Steiner problems crucially rely on the guarantee that the solution will be a tree. While constraining

edge weights to be negative makes sense as a model of the cost of running electricity lines, and

constraining node weights to be positive makes sense as a model of the expected value of potential

customers, neither constraint is appropriate when predicting semantic graphs. Positive edge weights

are necessary in order to predict reentrancies, which semantic graphs are known to have. And

negative node weights are needed to give a model the power to express that a concept is more likely

not to appear in a parse. In the next section we introduce an extension of PCST that removes these

constraints, and is more suitable for semantic parsing.

4.2 The Node-and-Edge-weighted Connected Subgraph (NEWCS)

Problem

Here we define a novel extension of the PCST problem in which node weights are not required to

be positive and edge weights are not required to be negative. Let G = (VG, EG) be an undirected

graph with real-valued node weights, w(v) ∈ R,∀v ∈ VG, and real-valued edge weights, w(e) ∈

R,∀e ∈ EG. The node-and-edge-weighted connected subgraph (NEWCS) problem is to find a

connected, but not necessarily spanning subgraph H = (VH , EH) ⊆ G of maximal weight:

NEWCS(G,w) = arg max H⊆G,
H connected

{∑

v∈VH

w(v) +
∑

e∈EH

w(e)

}
. (4.3)

In the remainder of the chapter, we will assume G = (VG, EG) is the input graph, and H =

(VH , EH) ⊆ G is a connected subgraph of G of maximal weight. We will refer to the number of

nodes in G as n.2 Equation 4.3 is exactly the same as Equation 4.2; we have only removed the

conditions on the weight function w. This allows us to state and prove the following trivial theorem:

2For dependency parsing, n coincides with the number of tokens in the sentence, but for joint semantic parsing n is
usually larger.
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Theorem 1. The NEWCS problem is NP-hard.

Proof. NEWCS is a relaxation of PCST, so every PCST problem is a NEWCS problem. Since

PCST can be reduced to NEWCS, NEWCS is also NP-hard.

We can situate this with respect to other results in graph-based parsing to give a more complete

picture of available techniques and their complexities. MSTParser (McDonald et al., 2005) was orig-

inally a first-order non-projective dependency parsing model (i.e. each arc is scored independently)

with O(n2) inference via the Chu-Liu-Edmonds algorithm (CLE; Chu and Liu, 1965; Edmonds,

1967). Second-order MST parsing (i.e. motifs of two adjacent arcs can be scored together) was

subsequently shown to be NP-complete (McDonald and Pereira, 2006). This led researchers to

explore approximate inference techniques for fast higher-order non-projective parsing (e.g., Koo

et al., 2010; Martins et al., 2013). JAMR (Flanigan et al., 2014) extended MST parsing techniques

from arborescences to (non-tree) semantic graphs, with an arc-factored model and O(n2 log n)

inference via MSCG. Theorem 1 shows that the spanning constraint was computationally critical;

removing it results in an NP-hard problem, even without higher-order factors. This result, along with

preliminary experiments, leads us to believe that approximate inference is required if graph-based

methods are to be practical for joint node and edge prediction. We propose one such method in §4.4.

First, as a reasonable baseline, we give a formulation of the problem as an integer linear program

(ILP), which can be solved either exactly or approximately by off-the-shelf ILP solvers like Gurobi3

or CPLEX.4

4.3 An Integer Linear Program Formulation

In Liu et al. (2015) we gave an ILP formulation of the PCST problem, which was adapted and

modified from two similar formulations (Ljubić et al., 2006; Martins et al., 2009). We used the
3http://www.gurobi.com/
4https://www.ibm.com/analytics/data-science/prescriptive-analytics/

cplex-optimizer
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solver as part of a summarization system that condensed an AMR representation of a document

into a smaller “summary” AMR graph. In that work, we enforced a tree constraint, but the tree

constraint could easily be removed, resulting a NEWCS formulation, which we give here. The

formulation converts the undirected input graph into a directed one, and uses single commodity

flow variables to enforce connectivity. The direction of edges in the solution are then ignored to

recover a maximal undirected subgraph.

More formally, we convert each undirected edge e = u↔v ∈ EG into two directed arcs u→v,

and v→u, both with weight w(e). Let AG be the set of all such directed arcs from the input graph,

and let AH be the set of arcs in the directed subgraph output by the ILP. Let 1 be the indicator

function:

1(P ) =





1 if P

0 otherwise.
(4.4)

For each node v ∈ VG in the input graph, we have a binary variable that indicates whether v is in

the solution:

zv = 1(v ∈ VH). (4.5)

Similarly, each arc gets a binary variable:

zu→v = 1(u→v ∈ AH). (4.6)

To ensure that we can recover a valid undirected graph from the solution, we constrain that at most

one direction is included:

zu→v + zv→u ≤ 1,∀u↔v ∈ EG. (4.7)

And for every arc u→v ∈ AG, we constrain that it may only be included if both its endpoints u and
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v are included:

zu→v ≤ zu,∀u→v ∈ AG, (4.8a)

zu→v ≤ zv,∀u→v ∈ AG. (4.8b)

We enforce connectivity using a set of single commodity flow variables, fa, one for each arc

a ∈ AG. Each flow variable takes a nonnegative integer value, representing the flow over a. We

introduce an extra node ROOT, and an arc from ROOT to each other node v ∈ VG. We constrain that

at most one of these edges can be in the solution:

∑

v∈VG

zROOT→v ≤ 1. (4.9)

For each directed arc a ∈ AG, we introduce a flow variable fa. ROOT may send out up to n units of

flow (one unit for each node in the solution):

∑

v∈VG

fROOT→v ≤ n. (4.10)

Flow may only be sent over an arc if the arc is included in the solution:

0 ≤ fa ≤ nza,∀a ∈ AG. (4.11)

Each non-root node v must “consume” exactly one unit of flow if it is included in the solution, and

zero units otherwise. By “consume”, we mean that the flow over its outgoing arcs is one unit less

than the flow over its incoming arcs:

∑

s∈VG
⋃
{ROOT}

fs→v −
∑

t∈VG

fv→t = zv,∀v ∈ VG. (4.12)
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Together, the flow variables and flow constraints ensure that every node in the solution is reachable

from ROOT. Since ROOT can only have one outgoing arc (by Equation 4.9), the solution consists of at

most one connected component. The problem may now be solved by an ILP solver, by maximizing

the following linear objective:

arg max z, f

{∑

v∈VG

w(v)zv +
∑

u→v∈AG

w(u↔v)zu→v

}
, (4.13)

subject to all of the given linear constraints (Equations 4.7–4.12).5

Symmetry Breaking

The ILP as formulated contains spurious ambiguity—multiple solutions to the ILP correspond to

the exact same undirected subgraph. One source of ambiguity is that given an optimal solution,

any one of its nodes may be selected as the one directly attached to ROOT. Ljubić et al. (2006)

introduced a set of symmetry-breaking constraints which disallow all but one solution. They found

that even though symmetry breaking adds O(n2) constraints, CPLEX returned a solution faster. In

our experiments using Gurobi, we found the opposite. We note that in semantic parsing, there is a

more natural way to break the symmetry. It is to jointly predict the “top” (§2.2.3) of the graph, and

incorporate each node v’s “top” score into the weight of ROOT→v.

4.4 An Approximate Algorithm

In preliminary AMR parsing experiments, we found ILP solving using Gurobi to be prohibitively

slow, with exact solutions sometimes taking hours, and even approximate solutions taking multiple

minutes. Inspired by Beasley’s Steiner tree solving algorithm (Beasley, 1989), along with similar

5Note that the objective is linear with respect to z regardless of the form or parameterization of the scoring function
w. In other words, w need not be the output of a linear model; it could be the output of a neural network, or any other
function. We precompute it before decoding, and during decoding consider it to be a single fixed scalar per candidate
node or arc.
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successful approaches in syntactic dependency parsing (Koo et al., 2010; Rush et al., 2012; Martins

et al., 2013), we investigated combining a discrete graph algorithm with Lagrangian relaxation.

Here we introduce a novel approximate algorithm, BEASLEYGRAPH, which extends Beasley’s

algorithm to handle NEWCS problems (and hence PCST problems as well).

At a high level, Beasley’s algorithm modifies the input graph and adds constraints in order to turn

the problem of finding a non-spanning tree into one of finding a spanning tree subject to constraints.

In BEASLEYGRAPH, instead of finding a maximal spanning tree, we find a maximal spanning

connected subgraph. As noted in §4.2, finding spanning connected subgraphs is computationally

easier than finding (possibly non-spanning) connected subgraphs. The constraints we add ensure that

an optimal NEWCS solution can be recovered from the solution to the connected spanning subgraph

problem. The constraints can be approximately enforced with Lagrangian relaxation (Geoffrion,

1974; Fisher, 2004), or more specialized methods like AD3 (Martins et al., 2011), to get an

approximate NEWCS algorithm.

Formally, let G = (VG, EG) and w : (VG ∪ EG) → R be a NEWCS problem instance. We

modify G by introducing a ROOT node: VG′ = VG ∪ {ROOT}. We also introduce two labeled edges

between ROOT and every other node v, one with label TOP and weight 0,6 and one with label OMIT

and weight −w(v): EG′ = EG ∪
⋃
v∈VG {ROOT

TOP←→ v, ROOT
OMIT←−→ v}. Intuitively, an OMIT edge

will indicate that its adjacent node does not appear in the solution.

We will use a binary indicator variable ze for each edge e, as before, to express constraints. We

constrain that at most one TOP edge can be chosen:

∑

v∈VG

z
ROOT

TOP←→v
≤ 1. (4.14)

6Similarly to §4.3, when using this solver as part of a semantic parser, a “top” model score could be used as a weight
here. This jointly solves “top” prediction along with concept and edge prediction, with the added benefit of breaking
symmetry.
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And for a given node v, we require that its OMIT edge and its TOP edge cannot both be included:

z
ROOT

OMIT←−→v
+ z

ROOT
TOP←→v
≤ 1,∀v ∈ VG. (4.15)

Lastly, if a node v’s OMIT edge is included, then no other edge adjacent to v may be included:

z
ROOT

OMIT←−→v
+ zv↔u ≤ 1,∀u, v ∈ VG. (4.16)

All of these constraints (Equations 4.14–4.16) can be organized into a single system of linear

inequalities:

Az ≤ 1. (4.17)

Now if we can find a maximum spanning connected subgraph H ′ ⊆ G′ satisfying Equation 4.17,

we can recover a solution H ⊆ H ′ to the NEWCS problem. Call a node v omitted in H ′

if ROOT
OMIT←−→ v ∈ EH′ . Likewise, call a node v a top in H ′ if ROOT

TOP←→ v ∈ EH′ . Let

VH = {v ∈ VG | v not omitted in H ′} and EH = EH′ ∩ EG. In other words, to get H we discard

the ROOT node, discard the OMIT and TOP edges, discard all omitted nodes from H ′, and keep

everything else.

Lemma 1. H is connected.

Proof. If VH is empty, then the lemma is vacuously true.

When VH is nonempty, we will show every node in VH is connected to a single top node t ∈ VH ,

and hence to each other: Let v ∈ VH be any non-omitted node. H ′ is connected and spanning, so v

must have a simple path in H ′ to ROOT. The path p from v to ROOT cannot go through an OMIT

edge, because omitted nodes have degree 1 (by Equation 4.16). The path therefore must go through

a TOP edge, as ROOT has no other kind of adjacent edges. There is at most one TOP edge (by

Equation 4.14); let t be the top node in H ′. So p must consist of a path from v to t, and then a TOP

edge from t to ROOT. Since p is simple, the path from v to t does not use the TOP edge, so it must
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use only edges from EG. Thus there is a path in H from v to t. t ∈ VH (by Equation 4.15). Thus

every node in H is connected to each other (through t).

Lemma 2. The node-and-edge-weight of H is equal to the edge-weight of H ′ plus a constant:

w(H) = w(H ′) + C, (4.18)

where,

w(H) =
∑

v∈VH

w(v) +
∑

e∈EH

w(e), (4.19)

w(H ′) =
∑

e∈EH′

w(e), (4.20)

C =
∑

v∈VG

w(v). (4.21)

Proof. Recall that TOP edges contribute no weight; OMIT edges have the negated weight of their

adjacent node; and all original edges keep their original weight. So,

w(H ′) + C =
∑

e∈EH

w(e) +
∑

ROOT
OMIT←−→v∈EH′

w(ROOT
OMIT←−→ v) + C (4.22)

=
∑

e∈EH

w(e) +
∑

v omitted in H′
−w(v) + C (4.23)

=
∑

e∈EH

w(e) +
∑

v not omitted in H′
w(v) (4.24)

=w(H) (4.25)

Note that C is a sum over all nodes in the input graph, and so is constant with respect to H ′.

Lemma 3. Every connected subgraph H ⊆ G has a corresponding feasible spanning connected

subgraph H ′ ⊆ G′.
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Proof. Proof by construction: If H is empty, let EH′ = {ROOT
OMIT←−→ v | v ∈ VG}. Otherwise,

arbitrarily select t ∈ VH . Let EH′ = VH ∪ {ROOT
TOP←→ t} ∪ {ROOT

OMIT←−→ v | v 6∈ VH}.

Theorem 2. H is a solution to the NEWCS problem.

Proof. Lemmas 1 and 3 together show that there is an invertible transformation from connected

subgraphs of G to spanning connected subgraphs of G′ satisfying Equation 4.17. Lemma 2 shows

that their objective values are equal up to a constant, so the maximizer of one is also the maximizer

of the other.

Theorem 2 shows that when the constraints are exactly enforced, we recover an exact solution.

When a Lagrangian method is used, sometimes the constraints can be enforced exactly, in which

case we can obtain a certificate of optimality, but sometimes the method fails to converge. In

that case, we resort to a heuristic in order to return a feasible but not necessarily optimal solution.

At each iteration during Lagrangian relaxation, MSCG is run on G′ with weights that have been

adjusted by Lagrange multipliers, outputting a graph H ′. Before convergence, H ′ may not satisfy

Equation 4.17. But a key property of Lagrangian relaxation is that the Lagrange-adjusted objective

gives an upper bound on the true objective, w(NEWCS(G,w)). We also use H ′ to find a feasible

solution. As our heuristic, we use the highest positive-scoring connected component of H (or

the empty graph if all connected components have negative weight). Note that every feasible

solution gives a lower bound on the objective. These upper and lower bounds could potentially be

used to improve an exact solver in a branch-and-bound framework. In our case though, we simply

return the highest-scoring feasible solution over all iterations, along with the lowest upper bound.

BEASLEYGRAPH is summarized in Algorithm 1. See Figure 4.1 for an illustration of a successful

run of the algorithm.

BEASLEYGRAPH is particularly well suited to graph-based semantic parsing, because additional

linguistically motivated constraints can be easily added the set of constraints enforced by Lagrangian

relaxation. In fact, inference in JAMR (Flanigan et al., 2014, 2016) is already done via MSCG
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Algorithm 1: BEASLEYGRAPH

Data: A graph G = (VG, EG) with node and edge weights given by w.
K ∈ N, a maximum number of iterations.
η ∈ R≥0, a learning rate.
Result: A connected subgraph of G, and an upper bound on the weight of any such

subgraph.
1 VG′ ← VG ∪ {ROOT} ;

2 EG′ ← EG ∪
⋃
v∈VG {ROOT

TOP←→ v, ROOT
OMIT←−→ v} ;

3 Let w(ROOT
TOP←→ v) = 0 and w(ROOT

OMIT←−→ v) = −w(v) for all v ∈ VG. Let w be a
column vector containing all edge weights.

4 Let L(z, λ) = w>z + λ>(1− Az) ; // Lagrangian relaxation
5 λ← 0 ;
6 Hbest ← ∅ ; // best feasible solution
7 wUB ←∑

e∈EG′
max(0, w(e)) ; // lowest upper bound

8 for i in 1, . . . , K do
9 w′ ← w − A>λ ; // Lagrange-adjusted weights

10 H ′ ← MSCG(G′, w′) ; z← binary indicators of EH′ ;
11 H ← highest-weighted connected component of H ′ \ {ROOT} ;
12 if w(H) ≥ w(Hbest) then
13 Hbest ← H ;

14 if L(z, λ) ≤ wUB then
15 wUB ← L(z, λ) ;

16 if w(Hbest) = wUB then
17 return Hbest, wUB ; // Hbest is optimal.

/* Take a projected gradient step toward minimizing L.
*/

18 λ← λ− η∇L(z, λ) ;
19 λ← max (0, λ) ;

20 return Hbest, wUB ; // Hbest is non-optimal.
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(b) G converted into G′, an instance of the
MSCG problem. Dashed lines indicate synthetic
nodes and edges added during the conversion.
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(c) The output of MSCG after an intermediate
iteration of Lagrangian relaxation. Weights have
been adjusted but H ′ still does not yet satisfy the
constraints.
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(d) The output of the final iteration of Lagrangian
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nodes v1, v2, v3, and v5 is returned.

Figure 4.1: An illustration of a succesful run of BEASLEYGRAPH.
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plus Lagrangian relaxation, so the extension to joint concept and relation identification using

BEASLEYGRAPH is straight-forward. In the following section, we introduce methods that work

for NEWCS (and hence PCST) solving, and so are of interest to the algorithms community. Note

though that they may not interact well with additional task-specific constraints, and so may require

more care if they are to be used in NLP.

4.5 Reducing the Problem Size with Tests

As with all NP-hard problems, the runtime complexity of NEWCS solving is highly dependent

on the size of the input. Memory can be an issue also; for very large PCST instances, ILP

solvers will often run out of available memory before returning a solution (Ljubić et al., 2006).

A common approach in PCST solving is to run a set of heuristic reduction tests to reduce the

size of the input graph before sending it to a solver (Duin and Volgenant, 1989). A reduction

test is a solution-preserving invertible transformation of the input graph: an optimal solution for

the transformed graph can be “untransformed” to give an optimal solution for the original graph.

Whereas BEASLEYGRAPH transformed the problem into a different problem, tests transform a

problem instance into a smaller instance of the same problem. Because of this, tests can be composed

and run in sequence; in practice they are tried repeatedly until all tests fail to reduce the problem

size.

Our main contribution is a set of tests based on Steinerpaths (Duin and Volgenant, 1987).

We expand the scope and applicability of Steinerpaths, and propose practical methods for finding

them (§4.5.1). We also catalog some tests from prior work on PCST solving, noting which can be

easily adapted to NEWCS solving (§??).

4.5.1 Steinerpaths

(Duin and Volgenant, 1987) introduced the useful idea of a Steinerpath. We present here a
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simpler, slightly generalized definition, using our own notation and without any assumptions on

the sign of weights. Given an undirected input graph G = (VG, EG) and node and edge weights

w : (VG ∪ EG)→ R, first let us construct a new directed graph G∗ = (VG, AG∗), where

AG∗ =
⋃

u↔v∈EG

{u→v, v→u}, (4.26)

. G∗ has an arc going in both directions for each original edge. Define the weight of an arc to be the

weight of its destination plus the weight of its original undirected edge:

w(u→v) = w(v) + w(u↔v). (4.27)

These weights can be thought of as the value of adding an arc when its source is already part of the so-

lution but its destination is not. A Steinerpath is a simple path p = 〈vo→v1, v1→v2, . . . , vm−1→vm〉

in G∗ such that every terminal subpath (or suffix) of p has nonnegative weight:

∀` ∈ {0, . . . ,m− 1} :
m−1∑

i=`

w(vi→vi+1) ≥ 0. (4.28)

A terminal subpath of p is a path with the same endpoint as p that uses only arcs from p. It

follows immediately from the definition that every suffix of a Steinerpath is also a Steinerpath. The

following lemma captures why Steinerpaths are of interest.

Lemma 4. If there is a Steinerpath from v0 to vm in G∗, and there is an optimal NEWCS solution

containing v0, then there is an optimal solution containing both v0 and vm.

Proof. Lemma 4 is proven for PCST in (Duin and Volgenant, 1987) under a slightly different

definition of Steinerpath. Our definition corresponds to a chain of Steinerpaths under their original

definition. The proof under our definition follows from theirs, and the fact that implication is

transitive.
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The intuition behind the proof is that if an optimal solution H already contains some non-empty

subset of nodes in the path {vi1 , . . . , vi`}, with i1 < . . . < i`, then H could be improved by adding

the remainder of the Steinerpath 〈vi`→vi`+1, . . . , vm−1→vm〉.

Another way to state Lemma 4 in terms of indicator variables is that, if we add the constraint

zv0 ≤ zvm , then our (new, smaller) feasible set still contains an optimal solution. If we can find

another Steinerpath in the opposite direction, from vm to v0, then we can equate the two variables,

strictly reducing the size of the problem.

Steinerpaths were originally introduced in the context of a slightly different variant of the

Steiner tree problem, in which a set of nodes K ⊆ VG is required to be included in the solution.

Steinerpaths were required to emanate from K, but we see no need for such a requirement. One of

our contributions is recognizing that Steinerpaths between any two nodes can be used to reduce the

size of a NEWCS problem.

Finding Steinerpaths

Steinerpaths starting from a fixed set of nodes were originally found using a variant of Dijkstra’s

algorithm (Duin and Volgenant, 1987). Since we wish to discover Steinerpaths regardless of their

source, we instead propose a cubic-time all-pairs Steinerpaths algorithm (Algorithm 2) based on the

Floyd-Warshall all-pairs shortest path algorithm (Roy, 1959; Floyd, 1962; Warshall, 1962):

Algorithm 2 runs in O(n3) time, where n = |VG|. Floyd-Warshall runs in cubic time, and the

triply-nested for loop (Lines 4–8) also runs in cubic time. We restrict arc weights to only their

nonpositive part (Line 2) because Floyd-Warshall assumes nonnegative distances as input, in order

to return simple paths.7 Because w≤0 uses only the nonpositive part of arc weights, −ds,t is an

underestimate of w(ps,t), and in fact −ds,t is an underestimate of the weight of every suffix of ps,t.

Thus, Line 7 ensures that every suffix of the returned path has positive weight, and that the path is

7Even by allowing arcs of weight 0, the implementation requires some extra care to break ties in favor of simple
paths.
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Algorithm 2: All-Pairs Steinerpaths
Data: A graph G with node and edge weights given by w.
Result: A set of Steinerpaths in G.

1 Let G∗ be the edge-weighted directed graph defined from G as above.
2 Let w≤0 be a new arc weight function, given by w≤0(a) = −min(w(a), 0).
3 Run Floyd-Warshall on G∗ with arc distances given by w≤0 to get, for all pairs s, t, the

shortest path from s to t. Call this shortest path ps,t, and its distance ds,t.
4 for s ∈ VG do
5 for t ∈ VG do
6 for u ∈ VG do
7 if w(t→u) ≥ ds,t and u 6∈ ps,t then
8 yield 〈ps,t, t→u〉 ;

simple. Algorithm 2 is precise: every path returned is a Steinerpath. But the algorithm does not

return every Steinerpath. In fact, exhaustively finding every Steinerpath is an intractable problem,

which we prove by reduction from a known NP-complete problem:

Theorem 3. Determining in general whether or not there exists a Steinerpath from s to t for

s, t ∈ VG is NP-hard.

Proof. We show that the problem of determining whether a graph K admits a Hamiltonion circuit

with cost ≤ k can be reduced to finding a Steinerpath in a graph of size |VK |+ 3.

Given an edge-weighted graph K, arbitrarily choose a start vertex r ∈ VK . Remove r and add

two new vertices rs and rt. Each should get a copy of the same set of adjacent arcs that r had. Let

M be some number greater than the sum of all edge weights in K. Give each node weight M . Also

introduce two new nodes s and t with weight 0. Introduce an arc s→rs with weight −M(n+ 1).

Introduce an arc rt→t with weight k. There exists a Hamiltonion circuit in K with cost ≤ k if and

only if there exists a Steinerpath from s to t.

Not only is intractable to find every Steinerpath, the following lemma shows that even if we are

given all Steinerpaths, they do not alone suffice to reduce the problem space to a single solution.
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Lemma 5. Optimal solutions are not necessarily covered by Steinerpaths.

Proof. Let G be the graph illustrated in Figure 4.2. G is its own solution (H = G), but there are no

Steinerpaths that include the edge b↔e.
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Figure 4.2: A graph G whose NEWCS solution is not covered by Steinerpaths. NEWCS(G,w) =
G, and G’s Steinerpaths are 〈v2→v1〉, 〈v2→v3〉, 〈v5→v4〉, and 〈v5→v6〉. The edge v2↔v5 is not
covered.

4.6 Other Applications in Natural Language Processing

So far, we have noted the potential applications of NEWCS to AMR and MRS parsing, as well

as graph-based abstractive summarization. Several other semantic representations encode the

meaning of a natural language sentence as a labeled directed connected graph, and so are potential

applications. Frame-semantic parses were given in the form of a whole-sentence graph in one

track of a 2007 shared task (Baker et al., 2007). Jointly predicting nodes and edges in any semantic

dependency formalism is an instance of the NEWCS problem.

Joint syntactic dependency parsing and sentence compression can be posed as a PCST prob-

lem. The task has been solved exactly with an ILP (Thadani and McKeown, 2013), then later

approximately using Lagrangian relaxation (Thadani, 2014). When parsing more informal forms of

55



language, like that of social media or spoken dialog, some have noted that not every token partici-

pates in the syntactic analysis (e.g., Charniak and Johnson, 2001; Foster et al., 2011). Similarly,

some work suggests that multi-word expressions should be analyzed as a single unit in syntax

(e.g., Schneider et al., 2014). Jointly predicting syntactic dependency parses and excluded/merged

tokens could be formulated as an instance of the PCST problem. Taking this approach would be

most useful in languages with frequently non-projective syntax. Whereas semantic graphs tend to

be non-projective, syntax for some languages (such as English) tends to be highly projective. For

such languages, chart parsing techniques for projective parsing would be more appropriate, as they

can be extended in polynomial time to jointly predict which nodes should be excluded or merged

using the Bar-Hillel construction (Bar-Hillel et al., 1961).

4.7 Conclusion

We have introduced the node-and-edge-weighted connected subgraph (NEWCS) problem, an

extension of the prize-collecting, and node-weighted, Steiner tree problems. We gave an ILP

formulation as a baseline solver (§4.3), and a contributed a novel approximate algorithm (§4.4). We

developed new reduction tests based on Steinerpaths, that can speed up solving for both NEWCS

(and hence PCST) problems (§4.5). Finally, in Section 4.6, we noted other areas in NLP where

predicting connected, but not necessarily spanning, graphs is required, suggesting that the potential

impact of this work extends beyond semantic parsing.

56



Chapter 5

Encoding Networks

5.1 Introduction

Up to this point, this thesis has focused on how to decode linguistic graphs. Here, we turn our

attention toward the problem of encoding graphs. We introduce a class of neural models for encoding

graphs, called Kleene Graph Encoder Networks (KGEN). In contrast to graph convolutional

networks (GCN; Kipf and Welling, 2016), KGENs take an edge-centric view, and encode all

paths in a graph via dynamic programming. The encoding can be done efficiently and exactly

for moderately sized graphs when we use composition functions that follow the star semiring

laws (Lehmann, 1977). We hypothesize that by restricting the form of composition functions,

KGENs are:

• able to capture longer-distance dependencies while maintaining efficient inference,

• able to respect graph invariants, such as invariance to node reordering, and

• interpretable.

This chapter is broken up into two main sections. The first (§5.2) shows that it is possible to define

expressive composition functions that follow the star semiring laws. In particular, we introduce

Soft Patterns (SoPa), a type of finite state automaton with neural weights, whose transitions can
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be constrained so that SoPa and its decisions are highly interpretable. Viterbi inference in weighted

finite-state automata (WFSAs) follows the star semiring laws, and we use the model as a sequence

encoder, experimenting on a suite of document classification tasks. We show that SoPa can be

seen as a more powerful extension of a single-layer convolutional neural network (CNN; LeCun,

1998), but more efficient and interpretable (and less powerful) than recurrent neural networks like

LSTMs (Hochreiter and Schmidhuber, 1997).

In the second section (§5.3), we show how such a model can be used to learn contextualized

tensor representations of graphs and their parts. These representations can be used for a downstream

task, and can be learned end-to-end in conjunction with that downstream task. We test the model’s

effectiveness on a semantic dependency parsing task. We compare to a strong baseline based on a

graph convolutional network–based semantic role labeling system (Marcheggiani and Titov, 2017).

5.2 Sequence Encoding: SoPa

∗ Recurrent neural networks (RNNs; Elman, 1990) and convolutional neural networks (CNNs;

LeCun, 1998) are two of the most useful text representation methods in NLP (Goldberg, 2016).

These methods are generally considered to be quite different: the former encodes an arbitrarily long

sequence of text, and is highly expressive (Siegelmann and Sontag, 1995). The latter is more local,

encoding fixed length windows, and accordingly less expressive. In this paper, we seek to bridge

the expressivity gap between RNNs and CNNs, presenting SoPa (for Soft Patterns), a model that

lies in between them.

SoPa is a neural version of a weighted finite-state automaton (WFSA), with a restricted set of

transitions. Linguistically, SoPa is appealing as it is able to capture a soft notion of surface patterns

(e.g., “what a great X !”, Hearst, 1992), where some words may be dropped, inserted, or replaced

with similar words (see Figure 5.1). From a modeling perspective, SoPa is interesting because

∗The work described in Section 5.2 was done with Roy Schwartz and Noah A. Smith, and published as Schwartz
et al. (2018).
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START 1 2 3 4 END
What a great X !

funny,
magical

ε

Figure 5.1: A representation of a surface pattern as a six-state automaton. Self-loops allow for
repeatedly inserting words (e.g., “funny”). ε-transitions allow for dropping words (e.g., “a”).

WFSAs are well-studied, and they come with efficient and flexible inference algorithms (e.g., Mohri,

1997; Eisner, 2002).

SoPa defines a set of soft patterns of different lengths, with each pattern represented as a

WFSA (Section 5.2.2). While the number and length of the patterns are hyperparameters, the

patterns themselves are learned end-to-end. SoPa then represents a document with a vector that

is the aggregate of the scores computed by matching each of the patterns with each span in the

document.

We then show that SoPa is in fact a generalization of a one-layer CNN (Section 5.2.3). Accord-

ingly, SoPa is more expressive than a one-layer CNN, and can encode flexible-length text spans.

We show that such CNNs can be thought of as a collection of linear-chain WFSAs, each of which

can only match fixed-length spans.

To test the utility of SoPa, we experiment with three text classification tasks (Section 5.2.4).

We compare against four baselines, including both a bidirectional LSTM and a CNN. Our model

performs on par or better than all baselines on all tasks (Section 5.2.5). Moreover, when training

with smaller datasets, SoPa is particularly useful, outperforming all models by substantial margins.

Finally, building on the connections discovered in this paper, we offer a new, simple method for the
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interpretation of SoPa (Section 5.2.6). This method applies equally well to CNNs.1

5.2.1 Background

Surface patterns. Patterns (Hearst, 1992) are particularly useful tool in NLP (e.g., Lin et al.,

2003; Etzioni et al., 2005; Schwartz et al., 2015). The most basic definition of a pattern is a sequence

of words and wildcards (e.g., “X is a Y”), which can either be manually defined or extracted from

corpus using cooccurrence statistics. Patterns are then used to be matched against a specific text

span by replacing wildcards with concrete words.

Davidov et al. (2010) introduced a flexible notion of patterns, which supports partial matching of

the pattern with a given text by skipping some of the words in the pattern, or introducing new words.

In their framework, when a sequence of text partially matches a pattern, hard-coded partial scores

are assigned to the pattern match. Here, we represent patterns as WFSAs with neural weights, and

support these partial matches in a soft manner.

WFSAs. We review weighted finite-state automata with ε-transitions before we move on to our

special case in Section 5.2.2. A WFSA-ε with d states over a vocabulary V is formally defined

as a tuple F = 〈π,T, η〉, where π ∈ Rd is an initial weight vector, T : (V ∪ {ε}) → Rd×d is a

transition weight function, and η ∈ Rd is a final weight vector. Given a sequence of words in the

vocabulary x = 〈x1, . . . , xn〉, the Forward algorithm (Baum and Petrie, 1966) scores x with respect

to F . Without ε-transitions, Forward can be written as a series of matrix multiplications:

p′span(x) = π>

(
n∏

i=1

T(xi)

)
η (5.1)

ε-transitions are followed without consuming a word, so Equation 5.1 must be updated to reflect

the possibility of following any number (zero or more) of ε-transitions in between consuming each

1We release our code at http://anonymous
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word:

pspan(x) = π>T(ε)∗

(
n∏

i=1

T(xi)T(ε)∗

)
η (5.2)

where ∗ is matrix asteration: A∗ :=
∑∞

j=0A
j . In our experiments we use a first-order approximation,

A∗ ≈ I +A, which corresponds to allowing zero or one ε-transition at a time. When the FSA F is

probabilistic, the result of the Forward algorithm can be interpreted as the marginal probability of

all paths through F while consuming x (hence the symbol “p”).

The Forward algorithm can be generalized to any semiring (Eisner, 2002), a fact that we make

use of in our experiments and analysis.2 The vanilla version of Forward uses the probability

semiring: ⊕ = +, ⊗ = ×. A special case of Forward is the Viterbi algorithm (Viterbi, 1967),

which sets ⊕ = max. Viterbi finds the highest scoring path through F while consuming x. Both

Forward and Viterbi have runtime O(d3 +d2n), requiring just a single linear pass through the phrase.

Using first-order approximate asteration, this runtime drops to O(d2n).3

Finally, we note that Forward scores are for exact matches—the entire phrase must be consumed.

We show in Section 5.2.2 how phrase-level scores can be summarized into a document-level score.

5.2.2 SoPa: A Weighted Finite-state Automaton RNN

We introduce SoPa, a WFSA-based RNN, which is designed to represent text as collection of surface

pattern occurrences. We start by showing how a single pattern can be represented as a WFSA-ε

(Section 5.2.2). Then we describe how to score a complete document using a pattern (Section 5.2.2).

Finally, we describe how multiple patterns can be used to encode a document (Section 5.2.2).

2The semiring parsing view (Goodman, 1999) has produced unexpected connections in the past (Eisner, 2016).
We experiment with max-times and max-plus semirings, but note that our model could be easily updated to use any
semiring.

3In our case, we also use a sparse transition matrix (Section 5.2.2), which further reduces our runtime to O(dn).
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Patterns as WFSAs

We describe how a pattern can be represented as a WFSA-ε. We first assume a single pattern. A

pattern is a WFSA-ε, but we impose hard constraints on its shape, and its transition weights are

given by differentiable functions that have the power to capture concrete words, wildcards, and

everything in between. Our model is designed to behave similarly to flexible hard patterns (see

Section 5.2.1), but to be learnable directly and “end-to-end” through backpropagation. Importantly,

it will still be interpretable as simple, almost linear-chain, WFSA-ε.

Each pattern has a sequence of d states (in our experiments we use patterns of varying lengths

between 2 and 7). Each state i has exactly three possible outgoing transitions: a self-loop, which

allows the pattern to consume a word without moving states, a main path transition to state i+ 1

which allows the pattern to consume one token and move forward one state, and an ε-transition

to state i+ 1, which allows the pattern to move forward one state without consuming a token. All

other transitions are given score 0. When processing a sequence of text with a pattern p, we start

with a special START state, and only move forward (or stay put), until we reach the special END

state.4 A pattern with d states will tend to match token spans of length d− 1 (but possibly shorter

spans due to ε-transitions, or longer spans due to self-loops). See Figure 5.1 for an illustration.

Our transition function, T, is a parameterized function that returns a d× d matrix. For a word x:

[T(x)]i,j =





σ(ui · vx + ai), if j = i (self-loop)

σ(wi · vx + bi), if j = i+ 1

0, otherwise,

(5.3)

where ui and wi are vectors of parameters, ai and bi are scalar parameters, vx is a fixed pre-trained

word vector for x, and σ is the sigmoid function. ε-transitions are also parameterized, but don’t

4To ensure that we start in the START state and end in the END state, we fix π = [1, 0, . . . , 0] and η = [0, . . . , 0, 1].
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consume a token and depend only on the current state:

[T(ε)]i,j =





σ(ci), if j = i+ 1

0, otherwise,
(5.4)

where ci is a scalar parameter.5 As we have only three non-zero diagonals in total, the matrix

multiplications in Equation 5.2 can be implemented using vector operations, and the overall

runtimes of Forward and Viterbi are reduced to O(dn).6

Words vs. wildcards. Traditional hard patterns distinguish between words and wildcards. Our

model does not explicitly capture the notion of either, but the transition weight function is simple

enough that it can be interpreted in those terms.

Each transition is a logistic regression over the next word vector vx. For example, for a main

path out of state i, T has two parameters, wi and bi. If wi has large magnitude and is close to the

word vector for some word y (e.g., wi ≈ 100vy), and bi is a large negative bias (e.g., bi ≈ −100),

then the transition is essentially matching the specific word y. Whereas if wi has small magnitude

(wi ≈ 0) and bi is a large positive bias (e.g., bi ≈ 100), then the transition is ignoring the current

token and matching a wildcard.7 The transition could also be something in between, for instance

by focusing on specific dimensions of a word’s meaning encoded in the vector, such as POS or

semantic features like animacy or concreteness (Rubinstein et al., 2015; Tsvetkov et al., 2015).

Scoring Documents

So far we described how to calculate how well a pattern matches a token span exactly (consuming

the whole span). To score a complete document, we prefer a score that aggregates over all matches
5Adding ε-transitions to WFSAs does not increase their expressive power, and in fact slightly complicates the

Forward equations. We use them as they require fewer parameters, and make the modeling connection between (hard)
flexible patterns and our (soft) patterns more direct and intuitive.

6Our implementation is optimized to run on GPUs, so the observed runtime is even sublinear in d.
7A large bias increases the eagerness to match any word.
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on subspans of the document (similar to “search” instead of “match”, in regular expression parlance).

We still assume a single pattern.

Either the Forward algorithm can be used to calculate pdoc(x) =
∑

1≤i≤j≤n pspan(xi:j),8 or Viterbi

to calculate sdoc(x) = max1≤i≤j≤n sspan(xi:j).9 In short documents, we expect patterns to typically

occur at most once, so we choose the Viterbi algorithm in our experiments.

Implementation details. In our experiments we use the Viterbi inference in the probability

semiring (i.e., ⊕ = max ,⊗ = ×). We give the specific recurrences we use to score documents in a

single pass with this model. We define:

[maxmul(A,B)]i,j = max
k
Ai,kBk,j. (5.5)

We also define the following for taking zero or one ε-transitions:

eps (v) = maxmul (v,max(I,T(ε))) (5.6)

We keep a state vector ht at each token:

h0 = eps(π>) (5.7a)

ht+1 = max (eps(maxmul (ht,T(xt+1))),h0) (5.7b)

st = maxmul (ht, η) (5.7c)

sdoc = max
1≤t≤n

st (5.7d)

[ht]i represents the score of the best path through the pattern that ends in state i after consuming t

tokens. By including h0 in Equation 5.7b, we are accounting for spans that start at time t. st is the

8With a probabilistic WFSA, this is the expected count of the pattern in the document.
9This is the score of the highest-scoring match.
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Smith’s funniest and most likeable movie in years

max-pooled
END states

pattern1 states

word vectors

pattern2 states

START
states

Figure 5.2: State activations of two patterns as they score a document. pattern1 (length three)
matches on ‘in years’. pattern2 (length five) matches on ‘funniest and most likeable movie’, using
a self-loop to consume the token ‘most’. Active states in the best match are marked with arrow
cursors.

maximum of the exact match scores for all spans ending at token t. And sdoc is the maximum score

of any subspan in the document.

Aggregating Multiple Patterns

We describe how k patterns are aggregated to score a document. These k patterns give k different

sdoc scores for the document, which are stacked into a vector z ∈ Rk and constitute the final

document representation of SoPa. This vector representation can be viewed as a feature vector.

In this paper, we feed it into a multilayer perceptron (MLP), culminating in a softmax to give a

probability distribution over document labels. We minimize cross-entropy, allowing the SoPa and

MLP parameters to be learned end-to-end.

SoPa uses a total of (2e + 3)dk parameters, where e is the word embedding dimension, d is

the number of states and k is the number of patterns. For comparison, an LSTM with a hidden

dimension of h has 4((e+ 1)h+ h2). In Section 5.2.5 we show that SoPa consistently uses fewer

parameters than a BiLSTM baseline to achieve its best result.
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SoPa as an RNN. SoPa can in fact also be considered as a simple RNN. As shown above, a

pattern with d states has a hidden state of size d. Stacking the k hidden states of k patterns into

one vector of size k × d can be thought of as the hidden state of our model. This hidden state is,

like in any other RNN, dependent of the input and the previous state. Using self-loops, the hidden

state at time point i can in theory depend on the entire document (see Figure 5.2 for illustration).

Importantly, since all transitions pass through a sigmoid and so have scores strictly less than 1, our

model is discouraged from following self-loops, only following them if it results in a better fit with

the remainder of the pattern.10

Although even single-layer RNNs are Turing complete (Siegelmann and Sontag, 1995), SoPa’s

expressive power is limited and determined by the semiring K used during the Forward algorithm.

When a WFSA is thought of as a function from finite sequences of tokens to K, it is restricted to

the class of functions known as rational series (Schützenberger, 1961; Droste and Gastin, 1999;

Sakarovitch, 2009).11 It is unclear how limiting this theoretical restriction is in practice, especially

when SoPa is used as a component in a larger network. Next, we show that SoPa is a generalization

of a one-layer CNN, thus more expressive.

5.2.3 CNN as SoPa

A convolutional neural network (CNN; LeCun, 1998) moves a fixed-size sliding window over the

document, producing a vector representation for each window. These representations are then often

summed, averaged, or max-pooled to produce a document-level representation (e.g., Kim, 2014;

Yin and Schütze, 2015). In this section, we show that SoPa is in fact a generalization of one-layer

CNNs.

To recover a CNN from a soft pattern with d+ 1 states, we remove self-loops and ε-transitions,

retaining only the main path transitions. We also remove the sigmoid in the main path transition

10Using other semirings can result in different dynamics, potentially encouraging rather than discouraging self-loops.
11Rational series generalize recognizers of regular languages, which are the special case where K is the Boolean

semiring.
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score (Equation 5.3), and use the max-sum semiring when running Forward. With only main path

transitions, the network will not match any span that is not exactly d tokens long. Using max-sum,

spans of length d will be assigned the score:

sspan(xi:i+d) =
d−1∑

j=0

wj · vxi+j
+ bj, (5.8a)

=w0:d · vxi:i+d
+

d−1∑

j=0

bj, (5.8b)

where w0:d = [w>0 ; . . . ;w>d−1]>, vxi:i+d
= [v>xi ; . . . ;v

>
xi+d−1

]>. We can now recognize this as an

affine transformation of the concatenated word vectors vxi:i+d
, which is just the same as a linear

convolutional filter with window size d.12 A single pattern’s score for a document is:

sdoc(x) = max
1≤i≤n−d+1

sspan(xi:i+d). (5.9)

Using k patterns with d+ 1 states corresponds to a CNN with window size d and output dimension

k. The max in Equation 5.9 is calculated for each pattern independently, corresponding to element-

wise max-pooling of the CNN’s output layer. Based on the equivalence between this impoverished

version of SoPa and CNNs, we conclude that one-layer CNNs are learning an even more restricted

class of WFSAs (linear-chain WFSAs) that capture only fixed-length patterns.

One notable difference between SoPa and CNNs is that CNNs can use any subdifferentiable

nonlinear filter (like an MLP over vxi:i+d
, for example). In contrast, in order to efficiently pool over

flexible-length spans, SoPa is restricted to operations that follow the semiring laws.13

As a model that is more flexible than a one-layer CNN, but less expressive than an RNN, SoPa

lies somewhere on the continuum between these two approaches. Continuing to study the bridge

12This variant of SoPa has d bias parameters, which correspond to only a single bias parameter in a CNN. The
redundant biases may affect optimization but are an otherwise unimportant difference.

13The max-sum semiring corresponds to a linear filter. Other semirings could potentially model more interesting
interactions, but we leave this to future work.
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between CNNs and RNNs is an exciting direction for future research.

5.2.4 Experiments

To evaluate SoPa, we apply it to text classification tasks. Below we describe our datasets and

baselines. More details can be found in Appendix A.2.

Datasets. We experiment with three binary classification datasets.

• SST. The Stanford Sentiment Treebank (Socher et al., 2013)14 contains roughly 10K movie

reviews from Rotten Tomatoes,15 labeled on a scale of 1–5. We consider the binary task,

which considers 1 and 2 as negative, and 4 and 5 as positive (ignoring 3s). It is worth

noting that this dataset also contains syntactic phrase level annotations, providing a sentiment

label to parts of sentences. In order to experiment in a realistic setup, we only consider the

complete sentences, and ignore syntactic annotations at train or test time. The number of

training/development/test sentences in the dataset is 6,920/872/1,821.

• Amazon. The Amazon Review Corpus (McAuley and Leskovec, 2013)16 contains electronics

product reviews, a subset of a larger review dataset. Each document in the dataset contains

a review and a summary. Following Yogatama et al. (2015), we only use the reviews part,

focusing on positive and negative reviews. The number of training/development/test samples

is 20K/5K/25K.

• ROC. The ROC story cloze task (Mostafazadeh et al., 2016) is a story understanding task.17

The task is composed of four-sentence story prefixes, followed by two competing endings:

one that makes the joint five-sentence story coherent, and another that makes it incoherent.

Following Schwartz et al. (2017), we treat it as a style detection task: we treat all “right”

14https://nlp.stanford.edu/sentiment/index.html
15http://www.rottentomatoes.com
16http://riejohnson.com/cnn_data.html
17http://cs.rochester.edu/nlp/rocstories/
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endings as positive samples and all “wrong” ones as negative, and we ignore the story prefix.

We split the development set into train and development (of sizes 3,366 and 374 sentences,

respectively), and take the test set as-is (3,742 sentences).

Reduced training data. In order to test our model’s ability to learn from small datasets, we also

randomly sample 100, 500, 1,000 and 2,500 SST training instances and 100, 500, 1,000, 2,500,

5,000, and 10,000 Amazon training instances. Development and test sets remain the same.

Baselines. We compare to four baselines: a BiLSTM, a one-layer CNN, DAN (a simple alternative

to RNNs) and a feature-based classifier trained with hard-pattern features.

• BiLSTM. Bidirectional LSTMs have been successfully used in the past for text classification

tasks (Zhou et al., 2016). We learn a one-layer BiLSTM representation of the document, and

feed the average of all hidden states to an MLP.

• CNN. CNNs are particularly useful for text classification (Kim, 2014). We train a one-layer

CNN with max-pooling, and feed the resulting representation to an MLP.

• DAN. We learn a deep averaging network with word dropout (Iyyer et al., 2015a), a simple

but strong text-classification baseline.

• Hard. We train a logistic regression classifier with hard-pattern features. Following Tsur

et al. (2010), we replace low frequency words with a special wildcard symbol. We learn

sequences of 1–6 concrete words, where any number of wildcards can come between two

adjacent words. We consider words occurring with frequency of at least 0.01% of our training

set as concrete words, and words occurring in frequency 1% or less as wildcards.18

Number of patterns. SoPa requires specifying the number of patterns to be learned, and their

lengths. Preliminary experiments showed that the model doesn’t benefit from more than a few

18Some words may serve as both words and wildcards. See Davidov and Rappoport (2008) for discussion.
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Model ROC SST Amazon

Hard 62.2 (4K) 75.5 (6K) 88.5 (67K)
DAN 64.3 (91K) 83.1 (91K) 85.4 (91K)
BiLSTM 65.2 (844K) 84.8 (1.5M) 90.8 (844K)
CNN 64.3 (155K) 82.2 (62K) 90.2 (305K)

SoPa 66.5 (255K) 85.6 (255K) 90.5 (256K)

ms\{σ} 64.4 84.8 90.0
ms\{σ, sl} 63.2 84.6 89.8
ms\{σ, ε} 64.3 83.6 89.7
ms\{σ, sl, ε} 64.0 85.0 89.5

Table 5.1: Test classification accuracy (and the number of parameters used). The bottom part
shows our ablation results: SoPa: our full model. ms: running with max-sum semiring (rather than
max-times). sl: self-loops, ε: ε transitions, σ: sigmoid transition (see Equation 5.3). The final row
is equivalent to a one-layer CNN.

dozen patterns. We experiment with several configurations of patterns of different lengths, generally

considering 0, 10 or 20 patterns of each pattern length between 2–7. The total number of patterns

learned ranges between 30–70.19

5.2.5 Results

Table 5.1 shows our main experimental results. In two of the cases (SST and ROC), SoPa out-

performs all models. On Amazon, SoPa performs within 0.3 points of CNN and BiLSTM, and

outperforms the other two baselines. The table also shows the number of parameters used by each

model for each task. Given enough data, models with more parameters should be expected to

perform better. However, SoPa performs better or roughly the same as a BiLSTM, which has 3–6

times as many parameters.

Figure 5.3 shows a comparison of all models on the SST and Amazon datasets with varying

training set sizes. SoPa is substantially outperforming all baselines, in particular BiLSTM, on small

19The number of patterns and their length are hyperparameters tuned on the development data (see Appendix A.2).
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Figure 5.3: Test accuracy on SST and Amazon with varying number of training instances.

datasets (100 samples). This suggests that SoPa, being less expressive than BiLSTM, is better fit to

learn from small datasets.

Ablation analysis. Table 5.1 also shows an ablation of the differences between SoPa and CNN:

max-times semiring with sigmoid vs. max-sum semiring, self-loops, and ε-transitions. The last

line is equivalent to a CNN with multiple window sizes. Interestingly, the most notable difference

between SoPa and CNN is the semiring, while ε transitions and self-loops have little effect on

performance.20

5.2.6 Interpretability

We turn to another key aspect of SoPa—its interpretability. We start by demonstrating how we

interpret a single pattern, and then describe how to interpret the decisions made by downstream

classifiers that rely on SoPa—in this case, a sentence classifier. Importantly, these visualization

techniques are equally applicable to CNNs.

Interpreting a single pattern. In order to visualize a pattern, we compute the pattern matching

scores with each phrase in our training dataset, and select the k phrases with the highest scores.

Table 5.2 shows examples of six patterns learned using the best SoPa model on the SST dataset,

20Although SoPa does make use of them—see Section 5.2.6.
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as represented by their five highest scoring phrases in the training set. A few interesting trends

can be observed from these examples. First, it seems our patterns encode semantically coherent

expressions. A large portion of them correspond to sentiment (the five top examples in the table),

but others capture different semantics, e.g., time expressions.

Second, it seems our patterns are relatively soft, and allow lexical flexibility. While some

patterns do seem to fix specific words, e.g., “of” in the first example or “minutes” in the last one,

even in those cases some of the top matching spans replace these words with other, similar words

(“with” and “half-hour”, respectively). Encouraging SoPa to have more concrete words, e.g., by

jointly learning the word vectors, might make SoPa useful in other contexts, particularly as a

decoder. We defer this direction to future work.

Finally, SoPa makes limited but non-negligible use of self-loops and epsilon steps. Interestingly,

the second example shows that one of the patterns had an ε-transition at the same place in every

phrase. This demonstrates a different function of ε-transitions than originally designed—they allow

a pattern to effectively shorten itself, by learning a high ε-transition parameter for a certain state.

Interpreting a document. SoPa provides an interpretable representation of a document—a vector

of the maximal matching score of each pattern with any span in the document. To visualize the

decisions of our model for a given document, we can observe the patterns and corresponding phrases

that score highly within it.

To understand which of the k patterns contributes most to the classification decision, we apply a

leave-one-out method. We run the forward method of the MLP layer in SoPa k times, each time

zeroing-out the score of a different pattern p. The difference between the resulting score and the

original model score is considered p’s contribution. Table 5.3 shows example texts along with their

most positive and negative contributing phrases.
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5.2.7 Related Work

Weighted finite-state automata. WFSAs and hidden Markov models21 were once popular in

automatic speech recognition (e.g., Hetherington, 2004; Moore et al., 2006; Hoffmeister et al., 2012)

and remain popular in morphology (e.g., Dreyer, 2011; Cotterell et al., 2015). Most closely related

to this work, neural networks have been combined with weighted finite-state transducers to do

morphological reinflection (Rastogi et al., 2016). These prior works learn a single FSA or FST,

whereas our model learns a collection of simple but complementary FSAs, together encoding a

sequence. We are the first to incorporate neural networks both before WFSAs (in their transition

scoring functions), and after (in the function that turns their vector of scores into a final prediction),

to produce an expressive model that remains interpretable.

Recurrent neural networks. The ability of RNNs to represent arbitrarily long sequences of

embedded tokens has made them attractive to NLP researchers. The most notable variants, the long

short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRU;

Cho et al., 2014), have become ubiquitous in NLP algorithms (Goldberg, 2016). Recently, several

works introduced simpler versions of RNNs, such as recurrent additive networks (Lee et al., 2017)

and Quasi-RNNs (Bradbury et al., 2017). Like SoPa, these models can be seen as points along the

bridge between RNNs and CNNs.

Other works have studied the expressive power of RNNs, in particular in the context of WFSAs

or HMMs (Cleeremans et al., 1989; Giles et al., 1992; Visser et al., 2001; Chen et al., 2018). In this

work we have shown that one-layer CNNs are also in fact a restricted form of a WFSA.

Convolutional neural networks. CNNs are prominent feature extractors in NLP, both for gener-

ating character-based embeddings (Kim et al., 2016a), and as sentence encoders for tasks like text

classification (Yin and Schütze, 2015) and machine translation (Gehring et al., 2017). Similarly

21HMMs are a special case of WFSAs (Mohri et al., 2002).
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to SoPa, several recently introduced variants of CNNs support varying window sizes by either

allowing several fixed window sizes (Yin and Schütze, 2015) or by supporting non-consecutive

n-gram matching (Lei et al., 2015; Nguyen and Grishman, 2016).

Neural networks and patterns. Some works used patterns as part of a neural network. Schwartz

et al. (2016) used pattern contexts for estimating word embeddings, showing improved word

similarity results compared to bag-of-word contexts. Shwartz et al. (2016) designed an LSTM

representation for dependency patterns, using them to detect hypernymy relations. Here, we learn

patterns as a neural version of WFSAs.

Interpretability. There have been several efforts to interpret neural models. The weights of the

attention mechanism (Bahdanau et al., 2015) are often used to display the words that are most

significant for making a prediction. LIME (Ribeiro et al., 2016) is another approach for visualizing

neural models (not necessarily textual). Yogatama and Smith (2014) introduced structured sparsity,

which encodes linguistic information into the regularization of a model, thus allowing to visualize

the contribution of different bag-of-word features.

Other works jointly learned to encode text and extract the span which best explains the model’s

prediction (Yessenalina et al., 2010; Lei et al., 2016). Li et al. (2016) suggested a method that erases

pieces of the text in order to analyze their effect on a neural model’s decisions. Finally, several

works presented methods to visualize deep CNNs (Zeiler and Fergus, 2014; Simonyan et al., 2014;

Yosinski et al., 2015), focusing on visualizing the different layers of the network, mainly in the

context of image and video understanding. We believe these two types of research approaches are

complementary: inventing general purpose visualization tools for existing black-box models on the

one hand, and on the other, designing models like SoPa that are interpretable by construction.
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5.2.8 Conclusion

We introduced SoPa—a novel model that combines neural representation learning with WFSAs. We

showed that SoPa is a generalization of a one-layer CNN. It naturally models flexible-length spans

with insertion and deletion, and it can be easily customized by swapping in different semirings. SoPa

performs on par or strictly better than four baselines on three text classification tasks, while requiring

fewer parameters than the stronger baselines. On smaller training sets, SoPa outperforms all four

baselines. As a simple version of an RNN, which is more expressive than one-layer CNNs, we hope

that SoPa will encourage future research on the bridge between these two mechanisms. To facilitate

such research, we release our implementation at https://github.com/Noahs-ARK/soft_

patterns.
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Pattern Highest Scoring Phrases

Pattern 1

thoughtful , reverent portrait of
and astonishingly articulate cast of
entertaining , thought-provoking film with
gentle , mesmerizing portrait of
poignant and uplifting story in

Pattern 2

’s ε uninspired story .
this ε bad on purpose
this ε leaden comedy .
a ε half-assed film .
is ε clumsy ,SL the writing

Pattern 3

mesmerizing portrait of a
engrossing portrait of a
clear-eyed portrait of an
fascinating portrait of a
self-assured portrait of small

Pattern 4

honest , and enjoyable
soulful , scathingSL and joyous
unpretentious , charmingSL , quirky
forceful , and beautifully
energetic , and surprisingly

Pattern 5

is deadly dull
a numbingly dull
is remarkably dull
is a phlegmatic
an utterly incompetent

Pattern 6

five minutes
four minutes
final minutes
first half-hour
fifteen minutes

Table 5.2: Six patterns of different lengths learned by SoPa on SST. Each group represents a single
pattern p, and shows the five phrases in the training data that have the highest score for p. Columns
represent pattern states. Words marked with SL are self-loops. ε symbols indicate ε-transitions. All
other words are from main path transitions.
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Analyzed Documents

it ’s dumb , but more importantly , it ’s just not scary

though moonlight mile is replete with acclaimed actors and actresses and tackles a subject that ’s
potentially moving , the movie is too predictable and too self-conscious to reach a level of high
drama

While its careful pace and seemingly opaque story may not satisfy every moviegoer ’s appetite,
the film ’s final scene is soaringly , transparently moving

unlike the speedy wham-bam effect of most hollywood offerings , character development – and
more importantly, character empathy – is at the heart of italian for beginners .

the band ’s courage in the face of official repression is inspiring , especially for aging hippies (
this one included ) .

Table 5.3: Documents from the SST training data. Phrases with the largest contribution toward
a positive sentiment classification are in bold green, and the most negative phrases are in italic
orange.
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Figure 5.4: An example sentence annotated with semantic dependencies from DM (Oepen et al.,
2014, top/red) and syntax from Universal Dependencies (Silveira et al., 2014, bottom/green).

5.3 Graph Encoding: Kleene Graph Encoder Networks

∗ In this section, we introduce a new class of graph neural networks, called Kleene Graph Encoder

Networks (KGEN). KGEN is a model architecture that generalizes SoPa (̃§5.2), and extends it in

order to encode graphs instead of sequences. In the same way that an RNN recursively propagates

information forward (or backward) in a sentence through adjacent tokens, graph neural networks

propagate information between adjacent nodes in a graph. Graphs are extremely general, and a

good general purpose graph encoder has many potential uses. Graph convolutional networks, for

example, were originally introduced in order to do semi-supervised learning on citation networks

and on a knowledge graphs (Defferrard et al., 2016; Kipf and Welling, 2016), but have since

been used for a variety of tasks, including machine translation (Bastings et al., 2017), named

entity recognition (Cetoli et al., 2017), semantic role labeling (Marcheggiani and Titov, 2017), and

multi-document summarization (Yasunaga et al., 2017), among others.

While most existing graph neural networks learn contextualized representations of nodes, our

model learns contextualized representations of paths. We argue that this is a finer-grained level of

representation (from which node representations can be recovered), and so has more potential uses.

∗The work described in Section 5.3 was done with Hao Peng, Jan Buys, and Noah A. Smith.
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It is an especially natural level of representation when used for the task of predicting arcs over the

same set of nodes as the input. We describe the most general form of the model architecture (§5.3.3)

in terms of star semirings, an algebraic view of the model and accompanying algorithm which

draws inspiration from prior work in NLP on semiring parsing (Goodman, 1999). We then describe

the specific model we experiment with, which uses the maxmul operation defined in the previous

section (Equation 5.5).

We test our model by encoding a syntactic dependency graph, and using the resulting repre-

sentations to predict semantic dependencies (Oepen et al., 2014, 2015). Our experiments compare

our model, KGEN, to a GCN baseline, and a syntax-free baseline on semantic dependency parsing

(§5.3.4).

We make the following contributions:

• We introduce KGEN, a new class of graph neural networks that captures features of all paths

in an input graph, efficiently, using a dynamic program.

• We are the first to formulate a machine learning algorithm in terms of star semirings,

expanding on the long line of semiring parsing work in NLP (Goodman, 1999; Eisner et al.,

2004). We show how the star in star semirings can be used to calculate otherwise infinitely

loopy computations in cubic time.

• We show experimentally that KGEN is effective at capturing both syntactic and linear order

context, improving a semantic dependency parser more than a graph convolutional network

baseline.

5.3.1 Related Work

Encoding nodes Graph convolutional networks have been used on citation networks and on a

knowledge graphs (Defferrard et al., 2016; Kipf and Welling, 2016), machine translation (Bastings

et al., 2017), named entity recognition (Cetoli et al., 2017), semantic role labeling (Marcheggiani

79



factorytheofAreas

prep pobj

arg1

(a) An ARG1 DM arc corresponding to a
length 2 syntactic path.

usedwascrocidolitethewheredusty

ccomp

advmod

loc

(b) A LOC DM arc corresponding to a length
2 syntactic path.

Figure 5.5: We highlight two DM arcs that do not have a directly corresponding syntactic arc, but
do have a corresponding path of syntactic arcs.

and Titov, 2017), and multi-document summarization (Yasunaga et al., 2017), among others. GCNs

provide contextualized node representations, which can be influenced by other nodes within a fixed

distance, k. In exchange for limiting the distance, GCNs can use non-lawful composition functions.

They can be thought of as encoding, in a node v’s vector, all paths emanating from v (and ending

anywhere) that have length exactly k. KGEN on the other hand, encodes, in a representation

for each pair of nodes, f(u, v), all paths from u to v of any length. KGEN’s is a finer-grained

representation, because outgoing representations from u can be always pooled, maxv f(u, v), to get

a node representation analogous to GCN’s. It is unclear that a GCN node representation for u can

be “unpooled” to recover a representation for each opposite node v.

Encoding paths Paths of syntactic dependencies have long been recognized as useful features

for predicting semantic relations. Conveniently, syntactic dependencies form an arborescence, so

there is a unique path from any given source token to any other given destination token, making

feature extraction easy and efficient. In Chapter 2, we experimented with several variants of hand-

engineered path features (see Table 2.2), and found them to be some of the most predictive features.
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Roth and Lapata (2016) were the first to automatically learn syntactic dependency path features

with neural nets. Their semantic role labeling model ran an LSTM on the path between every

candidate pair of nodes, and was learned end-to-end. This strategy works well for arborescences,

which are relatively sparse, and where most of the predictive information lives on the direct shortest

path between two nodes. But is it possible to capture information that lives outside the shortest

path? What if there is no shortest path, or there are multiple? This situation arises as more NLP

preprocessing is conditioned on. . . for instance, one could add predicted discourse trees, or named

entity recognition, and then automatically learn features from the union of all the preprocessed

structures. KGEN encodes and aggregates all paths between every pair of nodes (of any length, even

paths with loops), so it is able to handle multigraphs, and capture “off the beaten path” information.

Because the recurrence of our path-RNN and the pooling function we use to aggregate multiple

paths together follow algebraic laws (§5.3.2), we are able to calculate and aggregate encodings for

all paths efficiently.

Along this line, Toutanova et al. (2016) introduced a model for knowledge base completion that

uses a bilinear composition function on paths. Their model includes a dynamic program to score all

paths up to a fixed length. Our method generalizes and improves on (Toutanova et al., 2016) in a

few key ways:

• Instead of calculating and aggregating scalar scores directly for paths, we calculate tensor

representations. Arbitrary (i.e., non-linear) downstream modules can then be used on the

output of KGEN, allowing for more powerful function learning without losing efficient

inference.

• We relax the bilinear requirement, requiring only that the recurrence and pooling functions

together follow the semiring laws (§5.3.2). Bilinear functions are a special case under the

sum-product semiring, but we experiment with other useful semirings.

• Specifically, by working with a max-pooling semiring instead of a sum-pooling one, we have
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a natural extension into a star semiring without fear of overflows. We can then encode all

paths of any length between a given pair of nodes, even loopy paths. We hypothesize that this

is important for encoding graph structures that deviate from the shortest path between two

nodes.

Invariance to node reorderings Our approach and GCNs have the advantage that they can be

agnostic to node order when desired. Nodes are unordered by definition in general graphs.1 Deep

Sets (Zaheer et al., 2017) studied the similar goal of being invariant to element ordering when

encoding sets. They argue that encoding elements into Rd, sum-pooling, then running an arbitrary

non-linear function such as an MLP can be a universal function approximator on subsets, when d

is at least the size of the set to be encoded. Follow up work showed d must be as large as the set

(Wagstaff et al., 2019). We note that because semiring ⊕ is commutative and associative by law,

this same goal is accomplished. Attention is also order invariant, a property which graph attention

networks (Veličković et al., 2018) make use of. These are all special cases of invariance under

group actions (Bloem-Reddy and Teh, 2019), the group action being permutation.

Another approach to contextualizing a node is to linearize its neighbors, and then run an (order-

sensitive) RNN over them (Peng et al., 2017b; Zayats and Ostendorf, 2017).2 An ordering of the

nodes must be chosen though, even if there is no natural ordering.3 Instead of choosing just one

ordering, multiple permutations could be sampled, as in Janossy pooling (Murphy et al., 2018), but

this comes at a high computational cost and only achieves approximate order invariance. We believe

it is worth exploring approaches that are order invariant by construction, and finding the expressive

limits of such approaches.

1One can always opt in to order-sensitivity by adding additional synthetic arcs, as in the “+” arcs in Figure 1.1 and
the “next” arcs in Figure 5.6.

2An extreme version of this is to linearize the entire graph and encode it with an RNN (Niepert et al., 2016; Konstas
et al., 2017; Zellers et al., 2018).

3In Zellers et al. (2018) we found that our model for scene graph parsing was relatively robust to ordering schemes,
but we did observe differences.
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5.3.2 Background: Star Semirings and Kleene’s Algorithm

A star semiring is an algebraic structure which is closely connected to regular expressions and

weighted finite state automata. Formally, it is a six-tuple, (S, 0©, 1©,⊕,⊗, ~), where S is a set,

0©, 1© ∈ S are distinguished elements, ⊕, ⊗ : S ×S → S are binary operations, and ~ : S → S is

a unary operation, subject to the following laws. For all a, b, c ∈ S:

0©⊕ a = a⊕ 0© = a ( 0© is the identity for ⊕) (5.10a)

(a⊕ b)⊕ c = a⊕ (b⊕ c) (⊕ is associative) (5.10b)

a⊕ b = b⊕ a (⊕ is commutative) (5.10c)

1©⊗ a = a⊗ 1© = a ( 1© is the identity for ⊗) (5.10d)

(a⊗ b)⊗ c = a⊗ (b⊗ c) (⊗ is associative) (5.10e)

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) (⊗ left distributes over ⊕) (5.10f)

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) (⊗ right distributes over ⊕) (5.10g)

a~ = 1©⊕ (a⊗ a~) = 1©⊕ (a~ ⊗ a). (asteration / transitive closure) (5.10h)

When clear from context, we will write a⊗ b as ab.

Star semirings extend semirings, which have been used extensively in dynamic programming

algorithms, especially in natural language processing (Goodman, 1999; Eisner et al., 2004). Intu-

itively, addition is used to combine alternate events (in our case alternate paths), and multiplication

is used to compose sequences of events that occur together jointly (in our case, the individual arcs

along a path). The distributive property enables refactoring, allowing computation to be memoized

and reused in a dynamic program. Star semirings add the asteration operator, ~, which is used to

repeat a sequence zero or more times ( in our case, following a loop on a non-simple path). Star

semirings have the same syntax as regular expressions, so in some sense they can be thought of as

interpreters for regular expressions. They are related to Kleene algebras, which follow the same
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laws, plus an additional idempotency law:

a⊕ a = a,∀a ∈ S. (5.11)

We happen to use Kleene algebras in all of our experiments, but idempotency is not strictly required

for KGEN.

As an example, the max-times semiring on the unit interval,M = ([0, 1], 0, 1,max ,×), can

be made into a star semiring by letting x~ = 1 for every x ∈ [0, 1].

Furthermore, any star semiring S = (A, 0©, 1©,⊕,⊗, ~) can be lifted to a star semiring over

square matrices in the following way:

Sd×d = (Ad×d,0, I,⊕,⊗, ~), (5.12a)

where:

0i,j = 0©, (5.12b)

Ii,j =





1©, if i = j

0©, otherwise,
(5.12c)

[A⊕B]i,j = Ai,j ⊕Bi,j, (5.12d)

[A⊗B]i,j =
n⊕

k=1

(Ai,k ⊗Bk,j), (5.12e)

A~ = KLEENES(A). (Alg. 3) (5.12f)

We describe Kleene’s algorithm (Kleene, 1951; O’Connor, 2011) in Algorithm 3. As in the Floyd-

Warshall algorithm, KLEENES(A) is built up iteratively, at each step allowing one more node to

be used in paths. Line 5 gives the main recurrence of the dynamic program. A path from i to j

will either go through k as an intermediate node (A(k−1)
i,k A

(k−1)
k,k

~A
(k−1)
k,j ), or not (A(k−1)

i,j ). Some

well-known special cases can calculate reachability (S = Boolean), shortest paths (S = min-plus),
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Algorithm 3: KLEENE / Generalized Floyd-Warshall
Data: A square matrix A ∈ Sd×d with entries from some star semiring S. A can be

thought of as the edge weights of a directed graph having {1, . . . , d} as vertices.
Result: A’s asteration, KLEENE(A).
/* A

(k)
i,j encodes paths from i to j that only use intermediate

nodes in {1, . . . , k}. */
1 A(0) ← A ; // paths having no intermediate nodes
2 for k = 1, . . . , d do
3 for i = 1, . . . , d do
4 for j = 1, . . . , d do
5 A

(k)
i,j ← (A

(k−1)
i,k A

(k−1)
k,k

~A
(k−1)
k,j )⊕ A(k−1)

i,j ;

6 return KLEENES(A) = A(n);

or can convert an FSA into a regular expression (S = RegEx). When calculating shortest paths

or reachability, a~ = 1©, i.e. loops are never needed, so the A(k−1)
k,k

~ term can be omitted. A

straightforward implementation is O(n3), but in many cases the two inner loops may be vectorized,

yielding runtimes closer to O(n). Lifting a star semiring into a square matrix is an effective way in

general to construct a star semiring with a non-commutative ⊗ operation. This is important for our

purposes, because we will use ⊗ to encode sequences, and we wish to be sensitive to the order of

the sequence we are encoding.4

5.3.3 Semantic Dependency Parsing Model

Since our focus is on encoding, we return to an arc-independent decoder, as in LOGISTIC-

EDGE (§2.2.2). Although we found that modeling arc interactions was beneficial, and achieved

state-of-the-art at the time (Chapter 3), the current state-of-the-art in semantic dependency pars-

ing (Dozat and Manning, 2018) uses arc-independent decoding, so this is a reasonable simplifying

choice. Let x = x1, . . . , xn be an input sentence of length n. Let L be the set of K + 1 possible

arc labels: DM’s original K arc labels, plus the additional label NOEDGE, which represents the

4⊕, on the other hand, must be commutative, by law (Equation 5.10a). This is important for our encoder to respect
the natural invariances of graphs. I.e. alternative paths have no order.
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absence of an arc. As in LOGISTICEDGE we consider all token index pairs 1 ≤ i, j ≤ n (in both

directions), and treat each ordered pair as a multiclass classification problem over L. We do not do

any singleton pruning or enforce any constraints on the output, so decoding can be done for each

pair independently and in parallel. We do prune pairs where |i− j| > D; the maximum arc distance

D = 20 was chosen so as to prune out fewer than 0.5% of gold arcs. We also prune the label set L

to the most common 20 labels (out of 59), pruning out fewer than 0.5% of gold arcs, but reducing

the label set size significantly.

For candidate source index i and destination index j, we calculate a dense representation with

a parameterized function fθ(x, i, j) (variants of f will be described in §5.3.3). Then we pass the

arc representation through an MLP, followed by a softmax to define a distribution over L (§5.3.3).

Parameters are learned to minimize the negative log likelihood of the training data under our model.

We use Adam (Kingma and Ba, 2015b) with weight decay and parameter dropout for optimization

(see Section A.3 for further optimization details).

Token Representations

We learn a lookup embedding vx ∈ Rdw for every word that appears in the training or development

data. Word vectors are initialized with normalized GloVe 840B embeddings (Pennington et al.,

2014a) (dw = 100), and updated during training. Given a sentence x, we run a 1-layer bidirectional

LSTM over x, concatenate the forward and backward hidden state of each token, and apply a learned

affine layer to obtain a contextualized token vector hi ∈ Rdw for each token index 1 ≤ i ≤ n.

Arc Representations

We experiment with three alternative ways of incorporating syntax to produce arc representations:

none (syntax-unaware), GCN, and KGEN. GCN and KGEN both construct directed graph G based

on a preprocessed syntactic dependency parse. The nodes ofG are the n tokens of x, plus a synthetic

node labeled ROOT, representing the syntactic root of the sentence. First we add every arc i `→ j
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Figure 5.6: Our example sentence, along with the multigraph that will be embedded and contextu-
alized. Solid blue “next” arcs (above the sentence) are added between each node and its successor.
Solid green arcs are syntactic dependency arcs (predicted in preprocessing). Every solid arc has a
corresponding dashed backward arc in the opposite direction.

in the dependency parse to G. Then we add a NEXT arc from every token to its successive token.

These arcs allow the graph network access to the linear order of the sentence. For every FORWARD

arc i `→ j, we a add a BACKWARD arc j `−1

→ i to G (see Figure 5.6). For the GCN model, we add a

self-loop i SELFLOOP→ i to every node i in the graph. In GCNs, this is necessary in order to propagate

information from a node to itself in successive GCN layers; in KGEN, this is unnecessary.

Baseline: No Graph Contextualization For our first baseline, we use no graph contextualization

step. We form an arc representation for the ordered pair (i, j) by concatenating their respective

token representations, along with three distance features.

f(x, i, j) = hi;hj; [abs(i− j), 1i<j, 1i=j]. (5.13)
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Baseline: Graph Convolutional Network For our second baseline, we reimplement the graph

convolutional network (GCN) model of Marcheggiani and Titov (2017), which we will refer to as

M&T for short. M&T was originally designed to perform dependency-based semantic role labeling

on the CoNLL-2009 dataset (Hajič et al., 2009). As a testament to the generality and flexibility

of graph-based methods, it can be used virtually without modification for semantic dependency

parsing. We follow the model faithfully, and we will restate it here for completeness. GCNs consist

of K layers, and in each layer a node is updated based on a function of its adjacent arcs and nodes.

Let u(k)
i denote the representation of the ith node at the kth layer. Each layer is defined inductively

in terms of the previous layer, and the current layer’s parameters. In M&T, the update function is

defined as follows:

u
(0)
j = hj, (base layer) (5.14a)

u
(k+1)
j = ReLU



∑

i
`→j∈G

g
(k)

i
`→j

(
V

(k)
dir(`)u

(k)
i + b

(k)
`

)

 , (successive layer update) (5.14b)

where,

g
(k)

i
`→j

= σ
(
v̂

(k)
dir(`) · u

(k)
i + b̂

(k)
`

)
, (edge gate) (5.14c)

and node representations can be read from the final layer:

GCN(G, {hi}i≤n) = {u(K)
i }i≤n. (result) (5.14d)

ReLU is the rectified linear unit (Hahnloser et al., 2000), ReLU(x) = max(0, x). The parameter

matrices V
(k)
dir(`) and vectors v̂

(k)
dir(`) are looked up based on the only direction of the arc label,

dir(`) ∈ {FORWARD,BACKWARD, SELFLOOP}, not the label itself. This choice was originally

made in order to control the model size (Marcheggiani and Titov, 2017). In the first layer of a GCN,

each node’s representation contains information from its immediate neighbors. At the K th layer,

information has been propagated from all other nodes within K hops. We form an arc representation
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for the ordered pair (i, j) by concatenating their contextualized token representations, along with

three distance features:

f(x, i, j) = u
(K)
i ;u

(K)
j ; [abs(i− j), 1i<j, 1i=j]. (5.15)

If nodes i and j are within K hops of each other in G, then their representations are “aware” of each

other, in a sense. But note that the same vector u(K)
i is reused for all arc representations emanating

from the node i; only the distance features are calculated specifically for the pair (i, j). So for the

model to be effective, u(K)
i must encode information about its relationship to all other candidate

destination nodes.

Our Model: Kleene Graph Encoder Network Here we describe our novel use of Kleene’s

algorithm as a graph contextualization step. First we will describe it in general, without specializing

to a specific star semiring. Then we will describe the specific star semiring, maxmul, that we use in

our experiments. maxmul was chosen because of its experimental success as a sequence encoder

(Section 5.2), and its straightforward extension into a star semiring.

Given the directed multigraph G = ({1, . . . , n+ 1}, AG) (as in Figure 5.6), we embed G’s arcs

into some star semiring S with a differentiable parameterized function S : AG → S. We create an

adjacency matrix A ∈ Sn×n where

Ai,j =
⊕

vi
`→vj∈AG

S(vi
`→ vj). (5.16)

In other words, if there is no arc from i to j, then Ai,j = 0©; if there are multiple arcs, then they are

embedded and summed. We then run Kleene’s Algorithm (Algorithm 3) to obtain a “contextualized”

adjacency matrix A~
= KLEENES(A). See Figure 5.7 for an illustration of this contextualization

step. The contextualized arc representation for (i, j) can then be read directly from the matrix,

A
~

i,j . When S’s operations are differentiable, then the entire network is differentiable and can be
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learned end-to-end. We call the part of the network including S and KLEENE a Kleene graph

encoder network.

The batched maxmul star semiring. Here we describe how the Soft Patterns (SoPa) model

described in Section 5.2 can be extended into a star semiring, and so can be used in the KGEN

framework. LetMd×d be the max-times star semiring lifted to d × d matrices (Equation 5.12).

Concretely, element-wise max is used for ⊕, with the zero matrix as its identity; maxmul (Equa-

tion 5.5) is used for ⊗, with identity I; and KLEENEM is used for ~. Such a matrix can be thought

of in SoPa terms as the transition matrix for one input for one pattern. We embed arcs intoMd×d

similarly to our calculation of transition matrices in SoPa (Equation 5.3):

[
S(s

`→ t)
]
i,j

=





σ (wi,j · [hs;ht;v`] + ai,j) , if j = i or j = i+ 1

0, otherwise,
(5.17)

where wi,j is a vector of parameters, ai,j is a scalar bias parameter, hs is the token representation

of token s, v` is a lookup embedding of the arc label `, and σ is the sigmoid function. Like in

Equation 5.5, our transition matrix has two non-zero diagonals: the main diagonal, and one above it.

Similarly to how SoPa uses an array of a few hundred patterns, we add another index 1 ≤ b ≤ B,

where B is the number of patterns5:

[
S(s

`→ t)
]
b,i,j

=





σ (wb,i,j · [hs;ht;v`] + ab,i,j) , if j = i or j = i+ 1

0, otherwise.
(5.18)

The star semiring operations extend along this new dimension by operating on each pattern indepen-

dently.

Once A~ has been calculated, we extract the first row of each transition matrix, and concatenate
5In our experiments, we use B = 500 and d = 5 (Appendix A.3). Since the pattern length d is small and fixed, the

fact that asteration inMb×d×d is O(Bd3) still quite reasonable. Our GPU implementation is closer to O(d).
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them, along with distance features:

f(x, s, t) =
[
A

~

s,t

]
1,1,:

; . . . ;
[
A

~

s,t

]
B,1,:

; [abs(s− t), 1s<t, 1s=t]. (5.19)

To have exactly matched the SoPa model, we would have taken the single (1, d)th entry from each

pattern, which represents the weight of having matched the entire pattern, from start to end. To

avoid the extensive tuning of pattern lengths that SoPa required, we simply take the whole first row,

which gives the weight of matching each initial prefix of the pattern.

Our SoPa experiments (§5.2) suggest thatMb×d×d is an effective choice for encoding sequences.

We also choose M as a base semiring because its closure can be calculated without worry of

overflow, unlike the vanilla sum-product semiring (which overflows x~
=∞ for any x ≥ 1).

Output Layer

As a final step, we pass the computed arc representation for (i, j) through a two-layer multilayer

perceptron with output dimension |L|, and take a softmax to get a probability distribution over L:

P (` |,x, i, j; θ) = [softmax (MLP(fθ(x, i, j))]` . (5.20)

5.3.4 Experiments

Dataset

As in Chapters 2 and 3, we test our model on the task of semantic dependency parsing (Oepen et al.,

2014, 2015). We use the English portion of the 2015 SDP shared task data (Oepen et al., 2015), and

focus on predicting the DM formalism. See Section 2.1 for a description of the formalisms and task.

For our current preliminary experiments, we have filtered out training data sentences with more

than 20 tokens. This leaves 15,428 sentences, out of the original 33,964. We test on all sentences of

the in-domain test set.
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Baselines

Graph convolutional networks have been recently used to encode syntactic graphs in order to

improve (dependency-based) semantic role labeling (M&T; Marcheggiani and Titov, 2017). We

test a reimplementation of M&T, retrained on SDP data. SDP graphs are in nearly the same format

as the dependency-based SRL graphs used in the original paper (CoNLL-2009; Hajič et al., 2009),

so the same model can be retrained and used for semantic dependency parsing without adaptation.

We train and compare models which have the following basic architecture (§5.3.3):

• run a biLSTM over a sentence to get contextualized vectors for each token,

• optionally run a graph contextualization step (GCN or KGEN) that propagates information

over predicted syntactic dependency arcs to get syntax-contextualized vectors, and

• for each candidate pair of source and destination tokens, feed their representation into an

MLP to get a probability distribution over SDP arc labels (or no label).

To fairly evaluate and compare KGEN, we vary only the method used in the graph contextualization

step, keeping the rest of the model fixed. We test a (a) syntax-free model, with no graph contextual-

ization step; (b) GCN; and (c) KGEN. We use a 1-layer GCN in our experiments, as that was found

to be the best-performing on the CoNLL-2009 data. We run an ablation test for each of the three

models without the biLSTM step.

We also compare to two variants of the current state-of-the-art SDP system of Dozat and

Manning (D&M; 2018), and two variants of our own previously state-of-the-art system described in

Chapter 3 (NeurboParser; Peng et al., 2017a). Our syntax-free baseline (BiLSTM→MLP) is most

directly comparable to NEURBOPARSER BASIC and D&M BASIC. Both NeurboParser and D&M

are syntax-free systems that run on top of a biLSTM and predict each edge (mostly) independently.

NeurboParser scores arcs with an MLP and is trained with structured hinge loss, while D&M scores

arcs with a biaffine module, following Dozat and Manning (2017). D&M found gains from using

a biaffine module instead of an MLP. NEURBOPARSER FREDA3 adds higher-order factors, with
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Performance (dev. data, n ≤ 20) P R F1

MLP 75.4 70.2 72.7
GCN (K = 1)→MLP 87.5 86.2 86.8
KGEN→MLP 91.5 88.8 90.2

BiLSTM→MLP 91.0 89.0 90.0
BiLSTM→ GCN (K = 1)→MLP 91.5 89.9 90.7
BiLSTM→ KGEN→MLP 90.9 89.5 90.2

Table 5.4: Labeled precision, recall, and F1 on development data, filtered to sentences of length less
than or equal to 20. The upper three rows are models tested without any biLSTM. The first row is a
syntax-free model, with no graph contextualization step. GCN is a reimplementation of the graph
convolutional network of Marcheggiani and Titov (2017), and KGEN is our own Kleene Graph
Encoder Network. The lower three rows add a biLSTM under each of the three tested models.

significant gains in performance, but also significant costs in decoding time and implementation

complexity. We opted to keep decoding simple, to focus on the novel contribution. D&M +CHAR

+LEMMA adds subword features based on the individual characters in the words’ spellings, giving

an even more significant gain. In principle, those gains are unrelated to the novelties we have

introduced, and are still available to our systems.

5.3.5 Results

We report labeled precision, recall and F1 on development data for our models and baselines in

Table 5.4. The upper section contains models without a biLSTM, and the lower section contains

models run with a biLSTM. The straight MLP with no context performs poorly, unsurprisingly; it

has access only to token lookup embeddings, and other than the distance features, has no knowledge

of the linear order of the sentence. Both GCN and KGEN on the other hand, perform surprisingly

well without an LSTM, with KGEN significantly (4.7 absolute F1) better. These two models are

making use of the linear order of the sentence, but only through the input graph G (Figure 5.6).

The GCN tested has 1 layer, so a token’s representation only has access to a window limited to

the previous token, the next token, and any direct neighbors in the syntactic graph. KGEN on the
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Performance (test data) P R F1

MLP 70.6 64.2 67.2
GCN (K = 1)→MLP 82.6 80.0 81.3
KGEN→MLP 88.4 83.7 86.0

BiLSTM→MLP 85.4 81.4 83.3
BiLSTM→ GCN (K = 1)→MLP 85.6 82.3 84.0
BiLSTM→ KGEN→MLP 86.5 84.5 85.5

NEURBOPARSER BASIC - - 89.4
NEURBOPARSER FREDA3 - - 90.4
D&M BASIC - - 91.4
D&M +CHAR +LEMMA - - 93.7

Table 5.5: Labeled precision, recall, and F1 on the test data. The top three rows are models tested
without any biLSTM. The first row is a syntax-free model, with no graph contextualization step.
GCN is a reimplementation of the graph convolutional network of Marcheggiani and Titov (2017),
and KGEN is our own Kleene Graph Encoder Network. The next three rows add a biLSTM under
each of the three tested models. In the lower four rows, we quote performance results from recently
published state-of-the-art systems, for reference.

other hand is able to take much better advantage of the linear order information encoded in G.

Because G is fully connected and includes both directions for every arc, the output of KGEN is

fully contextualized, even without a biLSTM. By this we mean that the representation for every

token pair (s, t) includes information from every arc in G (and hence also every token in x).

Both GCN and the syntax-free model have much improved performance when run on top of

a biLSTM, with gains of 17.3 and 3.9 absolute F1, respectively. The gains accurately reflect how

much more information is available to the model. Somewhat surprisingly, KGEN is unimproved

with an LSTM; A reasonable conclusion is that KGEN is capturing the relevant linear order context

of the sentence as well as a biLSTM. The two variants of KGEN are tied as the best performing

models on the development set, beating the BiLSTM→GCN by 1.4 absolute F1. Of course, the

development set was used for tuning, so the results on the unseen test data in the following paragraph

should be taken more seriously.
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We report the same statistics for the test data in Table 5.5, along with four previously published

results for reference. Similar trends are seen on the test data, except that here, KGEN without a

biLSTM is the best performing model we tested. A possible explanation is that the biLSTM is

redundant, so the extra model complexity only leads to overfitting. Scores are roughly 5 points

lower than on the development data across the board, likely because we tested on test sentences of

all lengths, whereas longer sentences were filtered out of the train and development splits. This,

along with our very limited hyperparameter tuning, also likely explains the bulk of the gap between

our models and NEURBOPARSER/D&M. More comprehensive experiments could possibly close

the gap.

The results are already quite promising though, with KGEN without a biLSTM outperforming

a GCN even with a biLSTM. The fact that KGEN is able to achieve strong performance without

a biLSTM means that it is able to learn both sequential order and syntactic context from a single

unified multigraph. This bodes well for its potential when adding more preprocessed graphs to

its input multigraph. There is also potential for its decisions to be interpretable. Assuming the

same interpretation methods used in SoPa (§5.2.6) can be applied to KGEN, then KGEN’s use of

sequential order and syntactic context are both interrogable.
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Chapter 6

Conclusion

In this thesis we explored the dual goals of decoding and encoding linguistic graphs, with exper-

iments and motivating applications in natural language processing, especially semantic analysis.

These two goals roughly map to the two questions: “How do you automatically produce a graph

from text?”, and “How do you use such a graph, once you have it?”.

In Chapters 2 through 4, we introduced methods for decoding linguistic graphs—given natural

language text, how to produce a graph representing some aspect of its linguistic structure. In

Chapter 2, we experimented with linguistically motivated features and constraints in a linear model

for semantic dependency parsing, achieving strong results in a shared task. In Chapter 3, we built on

the winning model of that shared task, updating it to use deep neural networks. We further showed

how all three semantic dependency parsing formalisms could be modeled and predicted jointly in

a multitask learning setup, leading to state-of-the-art performance. In Chapter 4, we showed that

jointly predicting the nodes and edges of connected graphs is an NP-hard problem, relating it to the

prize-collecting Steiner tree problem. We introduced an extension of PCST, NEWCS, which is

more suitable for graph prediction. We extended techniques for PCST solving to NEWCS solving,

and showed how these techniques could be used for semantic parsing and other related NLP tasks.

In Chapter 5, we introduced new models for encoding sequences and graphs. We first introduced
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a new, highly interpretable model for text encoding called SoPa. SoPa is made up of many small

FSAs with neural weights, and we show experimentally that despite its limited form, SoPa is a

capable model for encoding sequences. Then we extended SoPa to encode graphs (Section 5.3),

making use of the fact that inference in WFSAs follows the semiring laws, and in some cases, the

star semiring laws. This allowed us to encode entire graphs using dynamic programming. We tested

our new model, the Kleene Graph Encoder Network (KGEN), by encoding a syntactic graph and

predicting semantic dependencies. We compared to a strong Graph Convolutional Network baseline,

and showed that KGEN resulted in a bigger performance gains on the SDP task.

One question left unexplored in this thesis is: when predicting a graph G, how should one

predict G’s node set? In our experiments we only predict arcs, given a fixed set of nodes. In fact,

we show in Chapter 4 that jointly modeling nodes and arcs is a hard problem, but we do give an

approximate decoding algorithm for it (BEASLEYGRAPH, §1). In future work, we hope to use this

BEASLEYGRAPH, along with a KGEN for encoding syntax, in a NeurboParser for the abstract

meaning representation. This would be a robust demonstration of the power of the graph-to-graph

pipeline described in Chapter 1.

While we focused in this thesis on graphs representing syntactic and semantic aspects of

sentences, graph-based networks have applications across NLP (e.g., Yasunaga et al., 2017; Cetoli

et al., 2017; Bastings et al., 2017), and beyond (e.g., Zhou, 2017; Defferrard et al., 2016; Kipf and

Welling, 2016; Zellers et al., 2018).

98



Appendix A

Implementation Details

A.1 Neural Turbo Semantic Parsing

Each input token is mapped to a concatenation of three real vectors: a pre-trained word vector;

a randomly-initialized word vector; and a randomly-initialized POS tag vector.1 All three are

updated during training. We use 100-dimensional GloVe (Pennington et al., 2014b) vectors trained

over Wikipedia and Gigaword as pre-trained word embeddings. To deal with out-of-vocabulary

words, we apply word dropout (Iyyer et al., 2015b) and randomly replace a word w with a special

unk-symbol with probability α
1+#(w)

, where #(w) is the count of w in the training set.

Models are trained for up to 30 epochs with Adam (Kingma and Ba, 2015b), with β1 = β2 = 0.9,

and initial learning rate η0 = 10−3. The learning rate η is annealed at a rate of 0.5 every 10 epochs

(Dozat and Manning, 2017). We apply early-stopping based on the labeled F1 score on the

development set.2 We set the maximum number of iterations of AD3 to 500 and round decisions

when it doesn’t converge. We clip the `2 norm of gradients to 1 (Graves, 2013; Sutskever et al.,

2014), and we do not use mini-batches. Randomly initialized parameters are sampled from a

1There are minor differences in the part-of-speech data provided with the three formalisms. For the basic models,
we use the POS tags provided with the respective dataset; for the multitask models, we use the (automatic) POS tags
provided with DM.

2Micro-averaged labeled F1 for the multitask models.
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Hyperparameter Value

Pre-trained word embedding dimension 100
Randomly-initialized word embedding dimension 25
POS tag embedding dimension 25
Dimensions of representations φ and ψ 100
MLP layers 2
BiLSTM layers 2
BiLSTM dimensions 200
Rank of tensor r 100
α for word dropout 0.25

Table A.1: Hyperparameters used in the NeurboParser experiments (§3.1.4,§3.2.4).

uniform distribution over
[
−
√

6/(dr + dc),
√

6/(dr + dc)
]
, where dr and dc are the number of the

rows and columns in the matrix, respectively. An `2 penalty of λ = 10−6 is applied to all weights.

Other hyperparameters are summarized in Table A.1.

We use the same pruner as Martins and Almeida (2014), where a first-order feature-rich

unlabeled pruning model is trained for each task, and arcs with posterior probability below 10−4 are

discarded. We further prune labeled structures that appear less than 30 times in the training set. In

the development set, about 10% of the arcs remain after pruning, with a recall of around 99%.
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A.2 Soft Patterns

We implemented all neural models in PyTorch,3 and the Hard baseline in scikit-learn (Pedregosa

et al., 2011).4 We train using Adam (Kingma and Ba, 2015a) with a batch size of 150. We use

300-dimensional GloVe 840B embeddings (Pennington et al., 2014a) normalized to unit length.

We randomly initialize all other parameters. Our MLP has two layers. For regularization, we use

dropout.5

In all cases, we tune the hyperparameters of our model on the development set by running 30

iterations of random search. The full list of hyperparameters explored for each model can be found

in Table A.2. Finally, we train all models for 250 epochs, stopping early if development loss does

not improve for 30 epochs.

3https://pytorch.org/
4http://scikit-learn.org/
5DAN uses word dropout instead of regular dropout as its only learnable parameters are the MLP layer weights.
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Type Values Models

Patterns {5:10,4:10,3:10,2:10},
{6:10,5:10,4:10},
{6:10,5:10,4:10,3:10,2:10},
{6:20,5:20,4:10,3:10,2:10},
{7:10,6:10,5:10,4:10,3:10,2:10}

SoPa

Learning rate 0.01, 0.05, 0.001, 0.005 SoPa, DAN, BiLSTM, CNN

Dropout 0, 0.05, 0.1, 0.2 SoPa, BiLSTM, CNN

MLP hid. dim. 10, 25, 50, 100, 300 SoPa, DAN, BiLSTM, CNN

Hid. layer dim. 100, 200, 300 BiLSTM

Out. layer dim. 50, 100, 200 CNN

Window size 4, 5, 6 CNN

Word dropout 0.1, 0.2, 0.3, 0.4 DAN

Log. reg. param 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 Hard

Min. pattern freq. 2–10, 0.1% Hard

Table A.2: The hyperparameters explored in our Soft Patterns experiments. Patterns: the number
of patterns of each length. For example, {5:20,4:10} means 20 patterns of length 5 and 10 patterns
of length 4. MLP hid. dim.: the dimension of the hidden layer of the MLP. Hid. layer dim.: the
BiLSTM hidden layer dimension. Out. layer dim.: the CNN output layer dimension. Window
size: the CNN window size. Log. reg. param: the logistic regression regularization parameter.
Min. pattern freq.: minimum frequency for a pattern to be included as a logistic regression feature,
expressed either as absolute count or as relative frequency in the train set. Models: the models to
which each hyperparameter applies (see Section 5.2.4).
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Hyperparameter Type Value Models

Word embedding dim. 100 all

Lemma embedding dim. 50 all

POS tag embedding dim. 50 all

LSTM hidden layer dim. 100 all

MLP hidden dim. 100 all

MLP number of layers 2 all

Number of convolutional layers 1 GCN
Pattern Length 5 KGEN
Number of patterns 500 KGEN
Syntax label embedding dim. 50 KGEN
Learning rate 10−3 all

Minibatch size 1 all

Gradient clipping 5.0 all

Parameter dropout 0.05 all

Weight decay 10−6 all

Max. train sentence length 20 all

Table A.3: The hyperparameter values used in our KGEN experiments.

A.3 Kleene Graph Encoder Networks

Table A.3 gives the full list of hyperparameter values used in our experiments: Hyperparameter

values were not tuned; they were guessed at based on prior work. We trained all models for 200

epochs, stopping early if development loss did not improve for 30 epochs. We implemented all

models in PyTorch.6 Other than word embeddings, all parameters were randomly initialized. We

used both weight decay and parameter dropout for regularization.

6https://pytorch.org
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del R. Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62. 27

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2017. Quasi-Recurrent

Neural Network. In Proc. of ICLR. 73

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.

1992. Class-based n-gram models of natural language. Computational Linguistics 18(4):467–479.

18

Jan Buys and Phil Blunsom. 2017. Robust incremental neural semantic graph parsing. In Proc. of

105

http://arxiv.org/abs/1704.04675
http://arxiv.org/abs/1704.04675
http://arxiv.org/abs/1704.04675
http://arxiv.org/abs/1704.04675
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1007/BF01581256
https://doi.org/10.1007/BF01581256
https://doi.org/10.1007/BF01581256
http://arxiv.org/abs/1901.06082
http://arxiv.org/abs/1901.06082
http://arxiv.org/abs/1901.06082
http://arxiv.org/abs/1704.07092


ACL. http://arxiv.org/abs/1704.07092. 37

Xavier Carreras. 2007. Experiments with a higher-order projective dependency parser. In Proc. of

CoNLL. 29

Rich Caruana. 1997. Multitask learning. Machine Learning 28(1):41–75. 20

A. Cetoli, S. Bragaglia, A. D. O’Harney, and M. Sloan. 2017. Graph Convolutional

Networks for Named Entity Recognition. arXiv:1709.10053 [cs] ArXiv: 1709.10053.

http://arxiv.org/abs/1709.10053. 78, 79, 98

Eugene Charniak and Mark Johnson. 2001. Edit detection and parsing for transcribed speech.

In Proceedings of the Second Meeting of the North American Chapter of the Association for

Computational Linguistics on Language Technologies. Association for Computational Linguistics,

NAACL ’01, pages 1–9. 56

Yining Chen, Sorcha Gilroy, Kevin Knight, and Jonathan May. 2018. Recurrent neural networks as

weighted language recognizers. In Proc. of NAACL. 73

Kyunghyun Cho. 2015. Natural language understanding with distributed representation.

ArXiv:1511.07916. 24
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Jennifer Foster, Özlem Çetinoglu, Joachim Wagner, Joseph Le Roux, Stephen Hogan, Joakim Nivre,

110

https://doi.org/10.1016/j.artint.2005.03.001
https://doi.org/10.1016/j.artint.2005.03.001
https://doi.org/10.1016/j.artint.2005.03.001
https://doi.org/10.1145/1014052.1014067
https://doi.org/10.1145/1014052.1014067
http://www.jstor.org/stable/30046157
http://www.jstor.org/stable/30046157
http://www.jstor.org/stable/30046157
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168


Deirdre Hogan, and Josef Van Genabith. 2011. #hardtoparse: POS tagging and parsing the

Twitterverse. In AAAI 2011 Workshop on Analyzing Microtext. pages 20–25. 56

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. 2017. Convolutional

sequence to sequence learning. In Proc. of ICML. 73

Arthur M Geoffrion. 1974. Lagrangean relaxation for integer programming. Springer. 45

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational

Linguistics 28(3):245–288. 9

C. Lee Giles, Clifford B Miller, Dong Chen, Hsing-Hen Chen, Guo-Zheng Sun, and Yee-Chun Lee.

1992. Learning and extracting finite state automata with second-order recurrent neural networks.

Neural Computation 4(3):393–405. https://doi.org/10.1162/neco.1992.4.3.393. 73

Kevin Gimpel and Noah A. Smith. 2010. Softmax-margin training for structured

log-linear models. Technical Report CMU-LTI-10-008, Carnegie Mellon University.

http://lti.cs.cmu.edu/sites/default/files/research/reports/2010/cmulti10008.pdf. 13

Michel X. Goemans and David P. Williamson. 1992. A general approximation

technique for constrained forest problems. In Proc. of SODA. pages 307–316.

http://dl.acm.org/citation.cfm?id=139404.139468. 5, 37, 39

Yoav Goldberg. 2016. A primer on neural network models for natural language processing. JAIR

57:345–420. 58, 73

C. Goller and A. Kuchler. 1996. Learning task-dependent distributed representations by back-

propagation through structure. In Proceedings of International Conference on Neural Networks

(ICNN’96). volume 1, pages 347–352 vol.1. https://doi.org/10.1109/ICNN.1996.548916. 1

Joshua Goodman. 1999. Semiring parsing. Computational Linguistics 25(4):573–605. 61, 79, 83

Alex Graves. 2012. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385

of Studies in Computational Intelligence. Springer. 24

111

https://doi.org/10.1162/neco.1992.4.3.393
https://doi.org/10.1162/neco.1992.4.3.393
http://lti.cs.cmu.edu/sites/default/files/research/reports/2010/cmulti10008.pdf
http://lti.cs.cmu.edu/sites/default/files/research/reports/2010/cmulti10008.pdf
http://lti.cs.cmu.edu/sites/default/files/research/reports/2010/cmulti10008.pdf
http://dl.acm.org/citation.cfm?id=139404.139468
http://dl.acm.org/citation.cfm?id=139404.139468
http://dl.acm.org/citation.cfm?id=139404.139468
https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1109/ICNN.1996.548916


Alex Graves. 2013. Generating sequences with recurrent neural networks. ArXiv 1308.0850. 99

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2016. A universal framework for inductive

transfer parsing across multi-typed treebanks. In Proc. of COLING. 35

Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas, and H. Se-

bastian Seung. 2000. Digital selection and analogue amplification coexist in a cortex-inspired

silicon circuit. Nature 405:947. https://doi.org/10.1038/35016072. 88
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gelina Ivanova, and Yi Zhang. 2014. SemEval 2014 task 8: Broad-coverage semantic dependency

parsing. In Proc. of SemEval. 2, 5, 7, 8, 9, 78, 79, 92

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated

corpus of semantic roles. Computational Linguistics 31(1):71–106. 9

Terence Parsons. 1990. Events in the Semantics of English: A Study in Subatomic Semantics. MIT

Press, Cambridge, MA. 4

118

http://www.aclweb.org/anthology/N16-1098
http://www.aclweb.org/anthology/N16-1098
http://www.aclweb.org/anthology/N16-1098
http://www.aclweb.org/anthology/N16-1098
https://arxiv.org/abs/1811.01900
https://arxiv.org/abs/1811.01900
https://aclweb.org/anthology/D16-1085
https://aclweb.org/anthology/D16-1085
https://aclweb.org/anthology/D16-1085
http://dl.acm.org/citation.cfm?id=3045390.3045603
http://dl.acm.org/citation.cfm?id=3045390.3045603
http://dl.acm.org/citation.cfm?id=3045390.3045603
http://r6.ca/blog/20110808T035622Z.html
http://r6.ca/blog/20110808T035622Z.html
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CoNLL-2008 shared task on joint parsing of syntactic and semantic dependencies. In Proc. of

CoNLL. 4

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural

networks. In Proc. of NIPS. 99

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2016. Greedy, joint

syntactic-semantic parsing with stack LSTMs. In Proc. of CoNLL. 33

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Semantic Represen-

tations From Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers). Association for Com-

putational Linguistics, Beijing, China, pages 1556–1566. https://doi.org/10.3115/v1/P15-1150.

1

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2003. Max-margin Markov networks. In Proc. of

NIPS. Vancouver, British Columbia, Canada, pages 25–32. 11

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004. Max-margin Markov networks. In Advances

in Neural Information Processing Systems 16. 26

Hillel Taub-Tabib, Yoav Goldberg, and Amir Globerson. 2015. Template kernels for dependency

parsing. In Proc. of NAACL. 35
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