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Abstract

We present a novel abstractive summarization
framework that draws on the recent develop-
ment of a treebank for the Abstract Meaning
Representation (AMR). In this framework, the
source text is parsed to a set of AMR graphs,
the graphs are transformed into a summary
graph, and then text is generated from the
summary graph. We focus on the graph-to-
graph transformation that reduces the source
semantic graph into a summary graph, mak-
ing use of an existing AMR parser and assum-
ing the eventual availability of an AMR-to-
text generator. The framework is data-driven,
trainable, and not specifically designed for
a particular domain. Experiments on gold-
standard AMR annotations and system parses
show promising results. Code is available at:
https://github.com/summarization

1 Introduction

Abstractive summarization is an elusive technolog-
ical capability in which textual summaries of con-
tent are generated de novo. Demand is on the rise
for high-quality summaries not just for lengthy texts
(e.g., books; Bamman and Smith, 2013) and texts
known to be prohibitively difficult for people to un-
derstand (e.g., website privacy policies; Sadeh et al.,
2013), but also for non-textual media (e.g., videos
and image collections; Kim et al., 2014; Kuznetsova
et al., 2014; Zhao and Xing, 2014), where extractive
and compressive summarization techniques simply
do not suffice. We believe that the challenge of ab-
stractive summarization deserves renewed attention

and propose that recent developments in semantic
analysis have an important role to play.

We conduct the first study exploring the feasi-
bility of an abstractive summarization system based
on transformations of semantic representations such
as the Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013). Example sentences and their
AMR graphs are shown in Fig. 1. AMR has much
in common with earlier formalisms (Kasper, 1989;
Dorr et al., 1998); today an annotated corpus com-
prised of over 20,000 AMR-analyzed English sen-
tences (Knight et al., 2014) and an automatic AMR
parser (JAMR; Flanigan et al., 2014) are available.

In our framework, summarization consists of
three steps illustrated in Fig. 1: (1) parsing the in-
put sentences to individual AMR graphs, (2) com-
bining and transforming those graphs into a single
summary AMR graph, and (3) generating text from
the summary graph. This paper focuses on step 2,
treating it as a structured prediction problem. We
assume text documents as input1 and use JAMR for
step 1. We use a simple method to read a bag of
words off the summary graph, allowing evaluation
with ROUGE-1, and leave full text generation from
AMR (step 3) to future work.

The graph summarizer, described in §4, first
merges AMR graphs for each input sentence through
a concept merging step, in which coreferent nodes of
the graphs are merged; a sentence conjunction step,
which connects the root of each sentence’s AMR
graph to a dummy “ROOT” node; and an optional

1In principle, the framework could be applied to other in-
puts, such as image collections, if AMR parsers became avail-
able for them.
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Figure 1: A toy example. Sentences are parsed into indi-
vidual AMR graphs in step 1; step 2 conducts graph trans-
formation that produces a single summary AMR graph;
text is generated from the summary graph in step 3.

graph expansion step, where additional edges are
added to create a fully dense graph on the sentence-
level. These steps result in a single connected source
graph. A subset of the nodes and arcs from the
source graph are then selected for inclusion in the
summary graph. Ideally this is a condensed repre-
sentation of the most salient semantic content from
the source.

We briefly review AMR and JAMR (§2), then
present the dataset used in this paper (§3). The main
algorithm is presented in §4, and we discuss our sim-
ple generation step in §5. Our experiments (§6) mea-
sure the intrinsic quality of the graph transformation
algorithm as well as the quality of the terms selected
for the summary (using ROUGE-1). We explore
variations on the transformation and the learning al-
gorithm, and show oracle upper bounds of various
kinds.

2 Background: Abstract Meaning
Representation and JAMR

AMR provides a whole-sentence semantic repre-
sentation, represented as a rooted, directed, acyclic
graph (Fig. 1). Nodes of an AMR graph are labeled
with concepts, and edges are labeled with relations.

Concepts can be English words (“dog”), PropBank
event predicates (“chase-01,” “run-02”), or special
keywords (“person”). For example, “chase-01” rep-
resents a PropBank roleset that corresponds to the
first sense of “chase”. According to Banarescu et al.
(2013), AMR uses approximately 100 relations. The
rolesets and core semantic relations (e.g., ARG0 to
ARG5) are adopted from the PropBank annotations
in OntoNotes (Hovy et al., 2006). Other semantic re-
lations include “location,” “mode,” “name,” “time,”
and “topic.” The AMR guidelines2 provide more
detailed descriptions. Banarescu et al. (2013) de-
scribe AMR Bank, a 20,341-sentence corpus anno-
tated with AMR by experts.

Step 1 of our framework converts input document
sentences into AMR graphs. We use a statistical se-
mantic parser, JAMR (Flanigan et al., 2014), which
was trained on AMR Bank. JAMR’s current perfor-
mance on our test dataset is 63% F -score.3 We will
analyze the effect of AMR parsing errors by com-
paring JAMR output with gold-standard annotations
of input sentences in the experiments (§6).

In addition to predicting AMR graphs for each
sentence, JAMR provides alignments between spans
of words in the source sentence and fragments of
its predicted graph. For example, a graph fragment
headed by “date-entity” could be aligned to the to-
kens “April 8, 2002.” We use these alignments in
our simple text generation module (step 3; §5).

3 Dataset

To build and evaluate our framework, we require
a dataset that includes inputs and summaries, each
with gold-standard AMR annotations.4 This allows
us to use a statistical model for step 2 (graph summa-
rization) and to separate its errors from those in step
1 (AMR parsing), which is important in determining
whether this approach is worth further investment.

Fortunately, the “proxy report” section of the
AMR Bank (Knight et al., 2014) suits our needs. A

2http://www.isi.edu/˜ulf/amr/help/
amr-guidelines.pdf

3AMR parse quality is evaluated using smatch (Cai and
Knight, 2013), which measures the accuracy of concept and re-
lation predictions. JAMR was trained on the in-domain training
portion of LDC2014T12 for our experiments.

4Traditional multi-document summarization datasets, such
as the ones used in DUC and TAC competitions, do not have
gold-standard AMR annotations.



# Docs. Ave. # Sents. Source Graph
Summ. Doc. Nodes Edges Expand

Train 298 1.5 17.5 127 188 2,670
Dev. 35 1.4 19.2 143 220 3,203
Test 33 1.4 20.5 162 255 4,002

Table 1: Statistics of our dataset. “Expand” shows the
number of edges after performing graph expansion. The
numbers are averaged across all documents in the split.
We use the official split, dropping one training document
for which no summary sentences were annotated.

proxy report is created by annotators based on a sin-
gle newswire article, selected from the English Gi-
gaword corpus. The report header contains metadata
about date, country, topic, and a short summary. The
report body is generated by editing or rewriting the
content of the newswire article to approximate the
style of an analyst report. Hence this is a single doc-
ument summarization task. All sentences are paired
with gold-standard AMR annotations. Table 1 pro-
vides an overview of our dataset.

4 Graph Summarization

Given AMR graphs for all of the sentences in the in-
put (step 1), graph summarization transforms them
into a single summary AMR graph (step 2). This is
accomplished in two stages: source graph construc-
tion (§4.1); and subgraph prediction (§4.2).

4.1 Source Graph Construction

The “source graph” is a single graph constructed us-
ing the individual sentences’ AMR graphs by merg-
ing identical concepts. In the AMR formalism, an
entity or event is canonicalized and represented by
a single graph fragment, regardless of how many
times it is referred to in the sentence. This princi-
ple can be extended to multiple sentences, ideally
resulting in a source graph with no redundancy. Be-
cause repeated mentions of a concept in the input
can signal its importance, we will later encode the
frequency of mentions as a feature used in subgraph
prediction.

Concept merging involves collapsing certain
graph fragments into a single concept, then merging
all concepts that have the same label. We collapse
the graph fragments that are headed by either a date-
entity (“date-entity”) or a named entity (“name”), if
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Figure 2: Graph fragments are collapsed into a single
concept and assigned a new concept label.

the fragment is a flat structure. A collapsed named
entity is further combined with its parent (e.g., “per-
son”) into one concept node if it is the only child
of the parent. Two such graph fragments are illus-
trated in Fig. 2. We choose named and date entity
concepts since they appear frequently, but most of-
ten refer to different entities (e.g., “April 8, 2002”
vs. “Nov. 17”). No further collapsing is done. A
collapsed graph fragment is assigned a new label by
concatenating the consisting concept and edge la-
bels. Each fragment that is collapsed into a new con-
cept node can then only be merged with other iden-
tical fragments. This process won’t recognize coref-
erent concepts like “Barack Obama” = “Obama” and
“say-01” = “report-01,” but future work may incor-
porate both entity coreference resolution and event
coreference resolution, as concept nodes can repre-
sent either.

Due to the concept merging step, a pair of con-
cepts may now have multiple labeled edges between
them. We merge all such edges between a given pair
of concepts into a single unlabeled edge. We remem-
ber the two most common labels in such a group,
which are used in the edge “Label” feature (Table 3).

To ensure that the source graph is connected, we
add a new “ROOT” node and connect it to every con-
cept that was originally the root of a sentence graph
(see Fig. 3). When we apply this procedure to the
documents in our dataset (§3), source graphs contain
144 nodes and 221 edges on average.

We investigated how well these automatically
constructed source graphs cover the gold-standard
summary graphs produced by AMR annotators. Ide-
ally, a source graph should cover all of the gold-
standard edges, so that summarization can be ac-
complished by selecting a subgraph of the source



Graph Expansion

see-01

dogi

name

person run-02

chase-01

dog cat

garden

ROOT

“Joe”

Merging

Collapsing

2
1

Sentence A:  I saw Joe’s dog, which was running in the garden.
Sentence B:  The dog was chasing a cat.

Figure 3: A source graph formed from two sentence
AMR graphs. Concept collapsing, merging, and graph
expansion are demonstrated. Edges are unlabeled. A
“ROOT” node is added to ensure connectivity. (1) and
(2) are among edges added through the optional expan-
sion step, corresponding to sentence- and document-level
expansion, respectively. Concept nodes included in the
summary graph are shaded.

Summary Edge Coverage (%)
Expand

Labeled Unlabeled Sent. Doc.

Train 64.8 67.0 75.5 84.6
Dev. 77.3 78.6 85.4 91.8
Test 63.0 64.7 75.0 83.3

Table 2: Percentage of summary edges that can be cov-
ered by an automatically constructed source graph.

graph (§4.2). In Table 2, columns one and two re-
port labeled and unlabeled edge coverage. ‘Unla-
beled’ counts edges as matching if both the source
and destination concepts have identical labels, but
ignores the edge label.

In order to improve edge coverage, we explore
expanding the source graph by adding every possi-
ble edge between every pair of concepts within the
same sentence. We also explored adding every pos-
sible edge between every pair of concepts in the en-
tire source graph. Edges that are newly introduced
during expansion receive a default label ‘null’. We
report unlabeled edge coverage in Table 2, columns
three and four, respectively. Subgraph prediction
became infeasable with the document-level expan-
sion, so we conducted our experiments using only
sentence-level expansion. Sentence-level graph ex-

pansion increases the average number of edges by
a factor of 15, to 3,292. Fig. 3 illustrates the moti-
vation. Document-level expansion covers the gold-
standard summary edge “chase-01” → “garden,”
yet the expansion is computationally prohibitive;
sentence-level expansion adds an edge “dog” →
“garden,” which enables the prediction of a struc-
ture with similar semantic meaning: “Joe’s dog was
in the garden chasing a cat.”

4.2 Subgraph Prediction

We pose the selection of a summary subgraph from
the source graph as a structured prediction prob-
lem that trades off among including important in-
formation without altering its meaning, maintain-
ing brevity, and producing fluent language (Nenkova
and McKeown, 2011). We incorporate these con-
cerns in the form of features and constraints in the
statistical model for subgraph selection.

Let G = (V,E) denote the merged source graph,
where each node v ∈ V represents a unique con-
cept and each directed edge e ∈ E connects two
concepts. G is a connected, directed, node-labeled
graph. Edges in this graph are unlabeled, and edge
labels are not predicted during subgraph selection.
We seek to maximize a score that factorizes over
graph nodes and edges that are included in the sum-
mary graph. For subgraph (V ′, E′):

score(V ′, E′;θ,ψ) =
∑
v∈V ′

θ>f(v)+
∑
e∈E′

ψ>g(e)

(1)

where f(v) and g(e) are the feature representations
of node v and edge e, respectively. We describe node
and edge features in Table 3. θ and ψ are vectors of
empirically estimated coefficients in a linear model.

We next formulate the selection of the subgraph
using integer linear programming (ILP; §4.2.1) and
describe supervised learning for the parameters (co-
efficients) from a collection of source graphs paired
with summary graphs (§4.2.2).

4.2.1 Decoding
We cast decoding as an ILP whose constraints en-

sure that the output forms a connected subcompo-
nent of the source graph. We index source graph
concept nodes by i and j, giving the “ROOT” node



Node Concept Identity feature for concept label
Features Freq Concept freq in the input sentence set; one binary feature defined for each frequency threshold τ = 0/1/2/5/10

Depth Average and smallest depth of node to the root of the sentence graph; binarized using 5 depth thresholds
Position Average and foremost position of sentences containing the concept; binarized using 5 position thresholds
Span Average and longest word span of concept; binarized using 5 length thresholds; word spans obtained from JAMR
Entity Two binary features indicating whether the concept is a named entity/date entity or not
Bias Bias term, 1 for any node

Edge Label First and second most frequent edge labels between concepts; relative freq of each label, binarized by 3 thresholds
Features Freq Edge frequency (w/o label, non-expanded edges) in the document sentences; binarized using 5 frequency thresholds

Position Average and foremost position of sentences containing the edge (without label); binarized using 5 position thresholds
Nodes Node features extracted from the source and target nodes (all above node features except the bias term)
IsExpanded A binary feature indicating the edge is due to graph expansion or not; edge freq (w/o label, all occurrences)
Bias Bias term, 1 for any edge

Table 3: Node and edge features (all binarized).

index 0. Let N be the number of nodes in the graph.
Let vi and ei,j be binary variables. vi is 1 iff source
node i is included; ei,j is 1 iff the directed edge from
node i to node j is included.

The ILP objective to be maximized is Equation 1,
rewritten here in the present notation:

N∑
i=1

vi θ>f(i)︸ ︷︷ ︸
node score

+
∑

(i,j)∈E

ei,j ψ
>g(i, j)︸ ︷︷ ︸

edge score

(2)

Note that this objective is linear in {vi, ei,j}i,j and
that features and coefficients can be folded into node
and edge scores and treated as constants during de-
coding.

Constraints are required to ensure that the selected
nodes and edges form a valid graph. In particular, if
an edge (i, j) is selected (ei,j takes value of 1), then
both its endpoints i, j must be included:

vi − ei,j ≥ 0, vj − ei,j ≥ 0, ∀i, j ≤ N (3)

Connectivity is enforced using a set of single-
commodity flow variables fi,j , each taking a non-
negative integral value, representing the flow from
node i to j. The root node sends out up toN units of
flow, one to reach each included node (Equation 4).
Each included node consumes one unit of flow, re-
flected as the difference between incoming and out-
going flow (Equation 5). Flow may only be sent over
an edge if the edge is included (Equation 6).∑

i

f0,i −
∑
i

vi = 0, (4)∑
i

fi,j−
∑
k

fj,k − vj = 0, ∀j ≤ N, (5)

N · ei,j − fi,j ≥ 0, ∀i, j ≤ N. (6)

The AMR representation allows graph reentran-
cies (concept nodes having multiple parents), yet
reentrancies are rare; about 5% of edges are re-
entrancies in our dataset. In this preliminary study
we force the summary graph to be tree-structured,
requiring that there is at most one incoming edge for
each node:

∑
j

ei,j ≤ 1, ∀j ≤ N. (7)

Interestingly, the formulation so far equates to
an ILP for solving the prize-collecting Steiner tree
problem (PCST; Segev, 1987), which is known to
be NP-complete (Karp, 1972). Our ILP formula-
tion is modified from that of Ljubić et al. (2006).
Flow-based constraints for tree structures have also
previously been used in NLP for dependency pars-
ing (Martins et al., 2009) and sentence compres-
sion (Thadani and McKeown, 2013). In our exper-
iments, we use an exact ILP solver,5 though many
approximate methods are available.

Finally, an optional constraint can be used to fix
the size of the summary graph (measured by the
number of edges) to L:∑

i

∑
j

ei,j = L (8)

The performance of summarization systems depends
strongly on their compression rate, so systems are
only directly comparable when their compression
rates are similar (Napoles et al., 2011). L is supplied
to the system to control summary graph size.

5http://www.gurobi.com



4.2.2 Parameter Estimation
Given a collection of input and output pairs (here,

source graphs and summary graphs), a natural start-
ing place for learning the coefficients θ and ψ is
the structured perceptron (Collins, 2002), which is
easy to implement and often performs well. Alterna-
tively, incorporating factored cost functions through
a structured hinge loss leads to a structured support
vector machine (SVM; Taskar et al., 2004) which
can be learned with a very similar stochastic opti-
mization algorithm. In our scenario, however, the
gold-standard summary graph may not actually be
a subset of the source graph. In machine transla-
tion, ramp loss has been found to work well in situ-
ations where the gold-standard output may not even
be in the hypothesis space of the model (Gimpel and
Smith, 2012). The structured perceptron, hinge, and
ramp losses are compared in Table 4.

We explore learning by minimizing each of the
perceptron, hinge, and ramp losses, each optimized
using Adagrad (Duchi et al., 2011), a stochastic op-
timization procedure. Let β be one model parameter
(coefficient from θ or ψ). Let g(t) be the subgradi-
ent of the loss on the instance considered on the tth

iteration with respect to β. Given an initial step size
η, the update for β on iteration t is:

β(t+1) ← β(t) − η√∑t
τ=1(g

(τ))2
g(t) (9)

5 Generation

Generation from AMR-like representations has re-
ceived some attention, e.g., by Langkilde and Knight
(1998) who described a statistical method. Though
we know of work in progress driven by the goal of
machine translation using AMR, there is currently
no system available.

We therefore use a heuristic approach to gener-
ate a bag of words. Given a predicted subgraph, a
system summary is created by finding the most fre-
quently aligned word span for each concept node.
(Recall that the JAMR parser provides these align-
ments; §2). The words in the resulting spans are
generated in no particular order. While this is
not a natural language summary, it is suitable for
unigram-based summarization evaluation methods
like ROUGE-1.

6 Experiments

In Table 5, we report the performance of subgraph
prediction and end-to-end summarization on the test
set, using gold-standard and automatic AMR parses
for the input. Gold-standard AMR annotations are
used for model training in all conditions. During
testing, we apply the trained model to source graphs
constructed using either gold-standard or JAMR
parses. In all of these experiments, we use the num-
ber of edges in the gold-standard summary graph to
fix the number of edges in the predicted subgraph,
allowing direct comparison across conditions.

Subgraph prediction is evaluated against the gold-
standard AMR graphs on summaries. We report pre-
cision, recall, and F1 for nodes, and F1 for edges.6

Oracle results for the subgraph prediction stage
are obtained using the ILP decoder to minimize the
cost of the output graph, given the gold-standard.
We assign wrong nodes and edges a score of −1,
correct nodes and edges a score of 0, then decode
with the same structural constraints as in subgraph
prediction. The resulting graph is the best summary
graph in the hypothesis space of our model, and
provides an upper bound on performance achiev-
able within our framework. Oracle performance on
node prediction is in the range of 80% when using
gold-standard AMR annotations, and 70% when us-
ing JAMR output. Edge prediction has lower perfor-
mance, yielding 52.2% for gold-standard and 31.1%
for JAMR parses. When graph expansion was ap-
plied, the numbers increased to 64% and 46.7%, re-
spectively. The uncovered summary edge (i.e., those
not covered by source graph) is a major source for
low recall values on edge prediction (see Table 2);
graph expansion slightly alleviates this issue.

Summarization is evaluated by comparing sys-
tem summaries against reference summaries, using
ROUGE-1 scores (Lin, 2004)7. System summaries
are generated using the heuristic approach presented
in §5: given a predicted subgraph, the approach finds
the most frequently aligned word span for each con-
cept node, and then puts them together as a bag of
words. ROUGE-1 is particularly usefully for eval-

6Precision, recall, and F1 are equal since the number of
edges is fixed.

7ROUGE version 1.5.5 with options ‘-e data -n 4 -m -2 4 -u
-c 95 -r 1000 -f A -p 0.5 -t 0 -a -x’



Structured perceptron loss: −score(G∗) + max
G

score(G)

Structured hinge loss: −score(G∗) + max
G

(score(G) + cost(G;G∗))

Structured ramp loss: −max
G

(score(G)− cost(G;G∗)) + max
G

(score(G) + cost(G;G∗))

Table 4: Loss functions minimized in parameter estimation. G∗ denotes the gold-standard summary graph. score(·)
is as defined in Equation 1. cost(G;G∗) penalizes each vertex or edge in G ∪G∗ \ (G ∩G∗). Since cost factors just
like the scoring function, each max operation can be accomplished using a variant of ILP decoding (§4.2.1) in which
the cost is incorporated into the linear objective while the constraints remain the same.

Subgraph Prediction Summarization
Nodes Edges ROUGE-1

P (%) R (%) F (%) F (%) P (%) R (%) F (%)
gold- Perceptron 39.6 46.1 42.6 24.7 41.4 27.1 32.3
standard Hinge 41.2 47.9 44.2 26.4 42.6 28.3 33.5
parses Ramp 54.7 63.5 58.7 39.0 51.9 39.0 44.3

Ramp + Expand 53.0 61.3 56.8 36.1 50.4 37.4 42.8
Oracle 75.8 86.4 80.7 52.2

89.1 52.8 65.8
Oracle + Expand 78.9 90.1 83.9 64.0

JAMR Perceptron 42.2 48.9 45.2 14.5 46.1 35.0 39.5
parses Hinge 41.7 48.3 44.7 15.8 44.9 33.6 38.2

Ramp 48.1 55.6 51.5 20.0 50.6 40.0 44.4
Ramp + Expand 47.5 54.6 50.7 19.0 51.2 40.0 44.7
Oracle 64.1 74.8 68.9 31.1

87.5 43.7 57.8
Oracle + Expand 66.9 76.4 71.2 46.7

Table 5: Subgraph prediction and summarization (to bag of words) results on test set. Gold-standard AMR annotations
are used for model training in all conditions. “+ Expand” means the result is obtained using source graph with
expansion; edge performance is measured ignoring labels.

uating such less well-formed summaries, such as
those generated from speech transcripts (Liu and
Liu, 2013).

Oracle summaries are produced by taking the
gold-standard AMR parses of the reference sum-
mary, obtaining the most frequently aligned word
span for each unique concept node using the JAMR
aligner (§2), and then generating a bag of words
summary. Evaluation of oracle summaries is per-
formed in the same manner as for system sum-
maries. The above process does not involve graph
expansion, so summarization performance is the
same for the two conditions “Oracle” and “Oracle
+ Expand.”

We find that JAMR parses are a large source of
degradation of edge prediction performance, and a
smaller but still significant source of degradation
for concept prediction. Surprisingly, using JAMR
parses leads to slightly improved ROUGE-1 scores.
Keep in mind, though, that under our bag-of-words

generator, ROUGE-1 scores only depend on concept
prediction and are unaffected by edge prediction.
The oracle summarization results, 65.8% and 57.8%
F1 scores for gold-standard and JAMR parses, re-
spectively, further suggest that improved graph sum-
marization models (step 2) might benefit from future
improvements in AMR parsing (step 1).

Across all conditions and both evaluations, we
find that incorporating a cost-aware loss function
(hinge vs. perceptron) has little effect, but that us-
ing ramp loss leads to substantial gains.

In Table 5, we show detailed results with and
without graph expansion. “+ Expand” means the re-
sults are obtained using the expanded source graph.
We find that graph expansion only marginally affects
system performance. Graph expansion slightly hurts
the system performance on edge prediction. For ex-
ample, using ramp loss with JAMR parser as input,
we obtained 50.7% and 19.0% for node and edge
prediction with graph expansion; 51.5% and 20.0%



without edge expansion. On the other hand, it in-
creases the oracle performance by a large margin.
This suggests that with more training data, or a more
sophisticated model that is able to better discrimi-
nate among the enlarged output space, graph expan-
sion still has promise to be helpful.

7 Related and Future Work

According to Dang and Owczarzak (2008), the ma-
jority of competitive summarization systems are ex-
tractive, selecting representative sentences from in-
put documents and concatenating them to form a
summary. This is often combined with sentence
compression, allowing more sentences to be in-
cluded within a budget. ILPs and approximations
have been used to encode compression and extrac-
tion (McDonald, 2007; Martins and Smith, 2009;
Gillick and Favre, 2009; Berg-Kirkpatrick et al.,
2011; Almeida and Martins, 2013; Li et al., 2014).
Other decoding approaches have included a greedy
method exploiting submodularity (Lin and Bilmes,
2010), document reconstruction (He et al., 2012),
and graph cuts (Qian and Liu, 2013), among others.

Previous work on abstractive summarization has
explored user studies that compare extractive with
NLG-based abstractive summarization (Carenini
and Cheung, 2008). Ganesan et al. (2010) pro-
pose to construct summary sentences by repeatedly
searching the highest scored graph paths. (Gerani et
al., 2014) generate abstractive summaries by modi-
fying discourse parse trees. Our work is similar in
spirit to Cheung and Penn (2014), which splices and
recombines dependency parse trees to produce ab-
stractive summaries. In contrast, our work operates
on semantic graphs, taking advantage of the recently
developed AMR Bank.

Also related to our work are graph-based summa-
rization methods (Vanderwende et al., 2004; Erkan
and Radev, 2004; Mihalcea and Tarau, 2004). Van-
derwende et al. (2004) transform input to logi-
cal forms, score nodes using PageRank, and grow
the graph from high-value nodes using heuristics.
In Erkan and Radev (2004) and Mihalcea and Ta-
rau (2004), the graph connects surface terms that
co-occur. In both cases, the graphs are constructed
based on surface text; it is not a representation of
propositional semantics like AMR. However, future

work might explore similar graph-based calculations
to contribute features for subgraph selection in our
framework.

Our constructed source graph can easily reach
ten times or more of the size of a sentence depen-
dency graph. Thus more efficient graph decoding
algorithms, e.g., based on Lagrangian relaxation or
approximate algorithms, may be explored in future
work. Other future directions may include jointly
performing subgraph and edge label prediction; ex-
ploring a full-fledged pipeline that consists of an au-
tomatic AMR parser, a graph-to-graph summarizer,
and a AMR-to-text generator; and devising an eval-
uation metric that is better suited to abstractive sum-
marization.

Many domains stand to eventually benefit from
summarization. These include books, audio/video
segments, and legal texts.

8 Conclusion

We have introduced a statistical abstractive summa-
rization framework driven by the Abstract Meaning
Representation. The centerpiece of the approach is
a structured prediction algorithm that transforms se-
mantic graphs of the input into a single summary se-
mantic graph. Experiments show the approach to be
promising and suggest directions for future research.
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